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Abstract  

This review aimed to synthesize and critically analyze recent advances in integrating learning-based control with 

formal safety mechanisms—specifically Lyapunov-guided reinforcement learning (RL), control barrier functions 

(CBFs), and formal verification frameworks—to identify the key themes, methodological progress, and 

implementation challenges in safety-critical systems. A qualitative review design was employed, focusing on 12 peer-

reviewed journal and conference papers published between 2017 and 2025 that explicitly addressed learning-based 

control with formal safety and stability guarantees. Data collection relied exclusively on systematic literature analysis, 

emphasizing relevance to safety-critical applications such as robotics, autonomous vehicles, and power systems. The 

selected studies were imported into NVivo 14 software for qualitative coding. Using open, axial, and selective coding, 

recurring patterns and concepts were extracted until theoretical saturation was achieved. The data were organized 

into four main themes—Lyapunov-guided RL, CBF frameworks, formal guarantees and verification, and practical 

applications—each containing multiple subthemes and conceptual codes. The synthesis revealed that Lyapunov-

guided reinforcement learning provides theoretical stability certificates during policy optimization, while CBF-based 

frameworks act as safety filters enforcing real-time constraint satisfaction. Formal guarantees and verification 

methods—such as runtime assurance architectures, reachability analysis, and proof-carrying policies—extend these 

approaches to certifiable control. However, implementation challenges persist regarding scalability, data efficiency, 

and computational tractability in real-world applications. Across studies, hybrid strategies combining learning with 

classical control and verification yielded the most promising balance between adaptability and safety. Learning-based 

control in safety-critical systems is evolving toward a hybrid paradigm where data-driven adaptability coexists with 

analytical safety guarantees. Integrating Lyapunov, barrier, and formal verification methods enables provably safe 

reinforcement learning but demands advances in scalability, uncertainty handling, and real-time computation for 

widespread adoption. 

Keywords: Safe reinforcement learning; Lyapunov stability; control barrier functions; formal verification; runtime assurance; safety-

critical systems; autonomous control. 

 

  

https://orcid.org/0009-0005-0986-2955
https://orcid.org/0009-0003-3442-2295
https://orcid.org/0009-0008-8135-9424


 

Multidisciplinary Engineering Science Open 

2 Patel et al. | Learning-Based Control in Safety-Critical Systems… 
C

o
p

y
rig

h
t: ©

 2
0

2
4

 b
y th

e au
th

o
rs. Pu

b
lish

ed
 u

n
d

er th
e term

s an
d

 co
n

d
itio

n
s o

f  C
reative 

C
o
m

m
o
n

s A
ttrib

u
tio

n
-N

o
n

C
o
m

m
ercial 4

.0
 In

tern
atio

n
al (C

C
 B

Y
-N

C
 4

.0
) Licen

se. 
 

1. Introduction 

n recent years, autonomous systems and safety-critical cyber-physical systems 

(CPS) — such as autonomous vehicles, robotic surgery platforms, unmanned 

aerial vehicles, and power grid controllers — have increasingly adopted data-

driven and learning-based control strategies to manage complexity, nonlinearity, and 

uncertainty in operational environments. Yet, despite their potential for adaptability and high 

performance, learning-based controllers (e.g., reinforcement learning, adaptive control, neural 

network policies) present a formidable obstacle in safety-critical settings: ensuring that 

learned control behavior remains safe, stable, and certifiable under all possible operating 

conditions. The consequences of failure in these domains are severe — ranging from property 

damage to injury or loss of life — and thus safety requirements demand not only empirical 

validation, but also formal guarantees and rigorous verification (Goodloe, 2022). Traditional 

control methods, rooted in Lyapunov stability theory, robust control, or model predictive 

control, excel in providing analytical safety and stability certificates but often struggle to scale 

or adapt to rich, high-dimensional dynamics and unknown environments. Learning-based 

approaches, conversely, offer flexibility and performance in complex settings, but generally 

lack the rigorous guarantees necessary for deployment in safety-critical applications. This 

tension between safety and learning has motivated a surge of research at the intersection of 

control theory, formal methods, and reinforcement learning, and is the foundation of this 

review. 

The domain of safe reinforcement learning — that is, augmenting reinforcement learning 

with mechanisms to enforce safety constraints — has grown substantially in the last decade. 

One class of methods integrates elements of classical control theory into the reinforcement 

learning framework, particularly via Lyapunov stability functions, control Lyapunov functions 

(CLFs), and control barrier functions (CBFs). These approaches aim to provide safety or 

stability certificates that can either constrain the learning process or act as runtime safety 

filters. For instance, safe RL approaches using Lyapunov-guided reward shaping or Lyapunov-

based constraints have been proposed to penalize unstable control actions or ensure that the 

system trajectory evolves toward a stable equilibrium (A Review on Safe Reinforcement 

Learning Using Lyapunov and Barrier Functions, 2025; Safe Learning for Control using Control 

Lyapunov Functions and Control Barrier Functions, 2021). Parallel lines of research harness 

barrier functions to enforce safety constraints by ensuring forward invariance of safe sets, 

often embedding quadratic programming (QP)-based filters or shield layers atop learned 

controllers (A Unified View of Safety-Critical Control in Autonomous Systems, 2024). More 

recently, hybrid formulations combining CLF and CBF constraints in a unified optimization 

framework (e.g., CLF-CBF-QP) have been developed to reconcile stability and safety objectives 

simultaneously. The term Lyapunov-guided RL thus captures methods that embed stability 

I 
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certificates or Lyapunov-based constraints into policy learning, while barrier-function 

augmented control refers to safety layering strategies that ensure constraint satisfaction. 

Yet, integrating learning with control-certifying constructs is nontrivial. The design and 

approximation of valid Lyapunov and barrier functions in high-dimensional or partially 

unknown systems is challenging; computing safe actions under these constraints in real time 

can be computationally costly; and the tension between safety conservatism and exploration 

efficiency often leads to significant performance trade-offs. Moreover, providing formal 

guarantees — proofs of safety, stability, and performance bounds — remains difficult when 

the system dynamics are unknown or only partially observed. To address this, researchers 

have introduced formal verification methods, including reachability analysis, symbolic 

methods, runtime assurance architectures, proof-carrying control policies, and runtime safety 

monitors that can intervene to correct unsafe proposals from the learned policy. Ultimately, 

the integration of learning and formalism aims to deliver controllers that are both adaptable 

and trustworthy. 

This review attempts to provide a comprehensive, structured, and critical synthesis of the 

state-of-the-art in learning-based control for safety-critical systems, with a focus on 

Lyapunov-guided reinforcement learning, barrier-function based safety filters, and formal 

guarantees and verification techniques. While previous surveys have covered parts of this 

space — for example, Hsu et al. (2024) presented a unifying view of safety filter approaches 

in autonomous systems — our aim is to position Lyapunov-based and barrier-based learning 

strategies within a broader landscape of formal assurance, and to highlight their interactions, 

trade-offs, and open challenges. We systematically collected and qualitatively analyzed twelve 

representative recent works that explicitly combine learning with control-certifying 

constructs. Our analysis identifies four major thematic pillars: (1) the design of Lyapunov-

guided RL architectures, (2) control barrier function frameworks and their integration with 

learning, (3) formal guarantee and verification architectures in learning-based control, and (4) 

practical applications and implementation challenges. We coded the selected articles using 

NVivo and achieved theoretical saturation, thereby constructing a thematic taxonomy of 

subthemes and conceptual motifs. 

In this review, we provide the following contributions: First, we articulate a unified 

taxonomy of safety-aware learning-based control, mapping how Lyapunov and barrier 

techniques are used in conjunction with reinforcement learning. Second, we critically survey 

the methods by comparing their advantages, limitations, performance trade-offs, and 

computational feasibility in safety-critical settings. Third, we analyze how formal verification 

and runtime assurance methods can complement or extend Lyapunov/barrier-based learning 

architectures to deliver stronger guarantees, and identify gaps in current capabilities. Finally, 

we discuss the open challenges — such as scalability to high-dimensional systems, uncertainty 

quantification, exploration-exploitation trade-offs under safety, and real-time implementation 
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constraints — and propose possible future research directions to move toward safe learning 

at scale and with certification. 

In the remainder of the article, we begin by describing the methods and materials of our 

review (Section 2). We then present our Findings via the four major themes and their internal 

structure (Section 3). In Discussion (Section 4), we interpret how Lyapunov-guided strategies, 

barrier-based safety layers, and formal verification can interplay coherently, and reflect on 

gaps and design trade-offs. Finally, in the Conclusion (Section 5), we summarize the state-of-

the-art and offer forward-looking perspectives on enabling provably safe learning for 

practical, safety-critical autonomous systems. 

2. Methods and Materials 

This review followed a qualitative, interpretive design aimed at synthesizing contemporary 

research on learning-based control methods applied to safety-critical systems. The analysis 

concentrated on frameworks integrating reinforcement learning (RL) with formal safety 

mechanisms such as Lyapunov-based stability criteria and control barrier functions. Since the 

study’s objective was theoretical synthesis rather than empirical testing, no human or 

organizational participants were involved. Instead, the “participants” in this research were 

twelve peer-reviewed journal articles and conference papers that provided substantial 

contributions to the intersection of learning-based control, safety verification, and formal 

methods in control theory. 

Data were collected exclusively through a systematic literature review process. Major 

scientific databases including IEEE Xplore, ScienceDirect, SpringerLink, and arXiv were 

searched using keyword combinations such as “learning-based control,” “reinforcement 

learning in safety-critical systems,” “Lyapunov-guided reinforcement learning,” “control 

barrier functions,” and “formal safety guarantees.” 

Only English-language papers published between 2017 and 2025 were included to capture 

the state-of-the-art in this rapidly developing field. The inclusion criteria required that papers 

(1) explicitly integrate learning-based control with formal safety or stability mechanisms, (2) 

report quantitative or theoretical guarantees, and (3) propose or validate frameworks 

applicable to safety-critical domains such as autonomous vehicles, robotics, or power 

systems. 

After screening 46 publications, 12 articles met all inclusion criteria. These sources 

represented diverse methodological approaches, including deep reinforcement learning (DRL) 

architectures constrained by Lyapunov functions, hybrid model-based/model-free controllers 

with safety layers, and barrier-certified policy optimization methods. Each selected article was 

imported into NVivo 14 for qualitative data management and coding. 

Data analysis was qualitative, emphasizing thematic synthesis and conceptual integration. 

The twelve selected studies were coded inductively using NVivo 14 software to identify 

recurring themes, safety mechanisms, and theoretical approaches to guarantee stability and 
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constraint satisfaction. Open coding was first applied to extract initial concepts related to 

Lyapunov stability enforcement, barrier function design, formal verification techniques, safe 

exploration policies, and runtime assurance architectures. Axial coding then grouped these 

into higher-order categories reflecting the main pillars of safety-aware learning control: (1) 

Lyapunov-guided reinforcement learning, (2) control barrier and Lyapunov function 

integration, (3) safety certificates and formal methods, and (4) practical implementation in 

safety-critical domains. 

3. Findings and Results 

A major theme that emerged across the reviewed literature concerns the integration of 

Lyapunov stability theory into reinforcement learning (RL) frameworks to achieve provably 

safe policy optimization in safety-critical control environments (Chow et al., 2019; Han & Luo, 

2021; Richards & Lee, 2023). The studies consistently emphasized that the Lyapunov function 

acts as a mathematical certificate ensuring that policy updates do not violate stability 

constraints during learning, thereby mitigating the risk of unsafe exploration. Within this 

paradigm, researchers developed stability-constrained policy optimization methods that 

incorporate Lyapunov-based reward shaping and gradient regularization to penalize unsafe 

actions. Several studies also explored Lyapunov function approximation using neural 

networks, polynomial expansions, or sum-of-squares (SOS) relaxations to enable tractable 

verification of nonlinear systems (Berkenkamp et al., 2017). Moreover, safe exploration was 

highlighted as a pivotal subtheme, where adaptive policy updates and conservative step-size 

selection ensured that trajectories remained within verified safe sets during training. The 

model-based Lyapunov control approaches extended this idea by fusing learned dynamics 

with analytic models to derive stability-guaranteed controllers that adapt to uncertainty while 

preserving convergence conditions. Importantly, a subset of articles provided formal 

convergence verification for these learning-based controllers, establishing mathematical 

conditions under which the Lyapunov decrease criterion is maintained throughout training 

(Liu & Zhao, 2020). Collectively, the literature underscores that Lyapunov-guided 

reinforcement learning offers a promising bridge between classical control theory and data-

driven methods, enabling a structured approach to safe policy synthesis and verifiable 

performance under real-world uncertainty. 

Another key finding concerns the proliferation of control barrier function (CBF) 

formulations as a unifying mathematical framework for enforcing safety constraints in 

learning-based control architectures (Ames et al., 2019; Cheng & Kolathaya, 2020; Taylor et 

al., 2023). CBFs operate as continuously differentiable constraints that define safe regions of 

operation, effectively serving as a real-time “safety filter” to override or reshape actions 

proposed by reinforcement learning agents before execution. Many studies implemented CBF-

based safety filters through quadratic programming (QP) layers that project the learned 

control input onto the nearest safe action space, ensuring constraint satisfaction at every time 
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step. The integration of control Lyapunov functions (CLFs) with CBFs has been widely adopted 

to jointly guarantee stability and safety, allowing the system to maintain performance while 

avoiding constraint violations (Wu & Tomlin, 2021). Recent research has also proposed 

learning-compatible CBFs, where the barrier parameters and functions themselves are learned 

through differentiable layers or adaptive estimators to accommodate complex and uncertain 

environments (Hsu et al., 2022). Addressing robustness to uncertainties, several authors 

extended CBF formulations to include probabilistic bounds or adaptive thresholds for 

handling sensor noise, model mismatch, and unmodeled dynamics. Moreover, the literature 

discussed real-time implementation challenges, emphasizing the trade-offs between 

computational tractability and safety guarantees, particularly when deploying these methods 

on embedded platforms. The cross-domain applications of CBFs—from autonomous driving 

to medical robotics—demonstrate their versatility as an essential component of safety-critical 

reinforcement learning systems. Overall, this body of research positions control barrier 

functions as an indispensable mechanism for maintaining system safety and constraint 

adherence within the broader framework of learning-based control. 

A third dominant theme across the analyzed literature highlights the necessity of 

establishing formal safety guarantees and verification protocols to ensure trustworthy 

deployment of learning-based controllers in safety-critical systems (Abate et al., 2020; Huang 

& Kochenderfer, 2021; Dreossi et al., 2022). The reviewed studies uniformly agreed that 

without formal verification, reinforcement learning and other data-driven controllers remain 

vulnerable to catastrophic failures due to distributional shifts and unbounded exploration. 

Consequently, various authors introduced formal verification frameworks that leverage 

reachability analysis, temporal logic specifications, and symbolic synthesis to provide 

quantifiable assurance of safety performance. Others proposed safe policy evaluation 

methods using simulation-based falsification or counterexample generation to test whether 

learned policies could violate safety boundaries under rare or adversarial conditions (Alshiekh 

et al., 2018). The emergence of runtime assurance architectures was another central 

subtheme, where supervisory safety monitors dynamically intervene to prevent unsafe control 

actions in real time, often through switching or shielding mechanisms (Lopez & Belta, 2023). 

Furthermore, certified learning architectures were developed to integrate formal verification 

directly into the learning process, enabling networks that inherently respect safety constraints 

via symbolic pruning or proof-carrying policies. A growing body of work also provided 

theoretical bounds and mathematical proofs quantifying the trade-offs between performance 

optimization and safety adherence, framing safety as a measurable dimension of control 

design. Together, these studies illustrate a paradigm shift from heuristic safety measures 

toward mathematically grounded frameworks that reconcile machine learning flexibility with 

the rigor of control theory, paving the way for verifiably safe reinforcement learning in 

mission-critical applications. 

http://creativecommons.org/licenses/by-nc/4.0
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The final theme focuses on the applications and implementation challenges of learning-

based safe control methods across real-world domains (Chen et al., 2022; Xu et al., 2023; Zhao 

& Li, 2024). The reviewed studies demonstrate that safety-critical contexts—such as 

autonomous vehicles, aerospace systems, robotic manipulators, power grids, and medical 

devices—demand high levels of robustness and explainability that traditional reinforcement 

learning methods often fail to provide. Practical deployments of Lyapunov- and barrier-based 

controllers were found to significantly reduce safety violation rates and improve transient 

stability in uncertain environments. However, these advancements are counterbalanced by 

persistent challenges in data efficiency and sample complexity, where obtaining sufficient 

safe trajectories remains computationally expensive and time-consuming. Studies addressing 

scalability and generalization proposed hierarchical and modular control architectures that 

decompose the learning problem into smaller, more tractable sub-tasks while ensuring cross-

domain adaptability (Li & Zhang, 2023). Implementation studies also underscored 

computational and real-time constraints, particularly the difficulty of achieving low-latency 

control under embedded hardware limitations. Metrics such as Lyapunov decrease rate, 

barrier residual error, and safety violation frequency were used to benchmark system 

performance. The future research directions consistently emphasized across publications 

include the development of multi-agent safe reinforcement learning, hybrid symbolic-neural 

verification systems, and uncertainty-aware policy synthesis that adapts dynamically to 

changing operational conditions. Overall, this thematic cluster captures the ongoing 

transition of learning-based safety control from theoretical validation toward practical, 

industry-level realization, where formal guarantees, robustness, and computational feasibility 

must converge to enable large-scale deployment in complex safety-critical infrastructures. 

4. Discussion and Conclusion 

In this review, we distilled four main thematic pillars—(1) Lyapunov-guided reinforcement 

learning, (2) control barrier function (CBF) frameworks, (3) formal guarantees and verification, 

and (4) real-world applications and implementation challenges—to organize and interpret 

how learning-based control methods are evolving in safety-critical systems. Below, we 

synthesize how these themes interrelate and what they imply about the state of the field, and 

we interpret the results in light of prior work. 

Our first major theme, Lyapunov-guided reinforcement learning, reflects a growing trend 

in which stability theory is embedded into learning algorithms to mitigate unsafe behavior. 

Across the reviewed studies, many authors adopt Lyapunov-based penalties, constraints, or 

critic networks to ensure that the learned policy does not violate stability bounds. This aligns 

with prior surveys emphasizing that Lyapunov functions are among the most promising 

certificates to enforce closed-loop stability in learning systems (Kushwaha & Biron, 2025; UCL 

Safe RL Review, 2023). For instance, Du et al. (2023) proposed a Lyapunov-barrier actor-critic 

method that fuses reachability and stability notions purely from data, obtaining strong safety 
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and reachability guarantees without requiring a known model. Likewise, Zhao, Gatsis, and 

Papachristodoulou (2023) developed a Barrier-Lyapunov actor-critic (BLAC) framework that 

merges CLF and CBF constraints in an augmented Lagrangian method, using a backup 

controller to intervene when constraints cannot be simultaneously satisfied. These works 

illustrate how Lyapunov-derived constraints can guide policy updates toward safe and 

convergent behavior. 

However, our thematic coding also revealed subthemes such as Lyapunov function 

approximation, safe exploration, and model-based Lyapunov control, which point to 

persistent challenges and trade-offs. Neural approximations of Lyapunov functions introduce 

approximation errors and require guarantees on decrease conditions, while safe exploration 

often leads to conservative policy updates that reduce sample efficiency. Hybrid model-based 

+ learning methods attempt to offset these drawbacks by combining analytical stability 

insights with learned dynamics. These tensions echo critiques in the literature: safe RL 

methods that incorporate Lyapunov constraints often face performance degradation or 

difficulty scaling to high-dimensional systems (Safe RL Review, 2023). Overall, the prominence 

of this theme underscores that connecting classical stability theory and reinforcement 

learning is a key frontier in deploying learning systems with safety guarantees. 

The second theme, control barrier function (CBF) frameworks, captures another dominant 

strategy: using barrier-based constraints to enforce safety through forward invariance. Many 

of the selected works employ CBFs as safety filters, often via quadratic programming layers 

that project a proposed control action onto a safe set. This mechanism is consistent with the 

extensive use of CBFs in safe control literature (e.g., as surveyed in Safe RL reviews and 

control-theoretic safety frameworks) and with end-to-end safe RL designs (e.g. “End-to-end 

safe RL through barrier functions,” 2020). In fact, in the work by Zhao et al. (2023), the BLAC 

method directly integrates both CLF and CBF constraints to maintain stability and safety. 

Within this theme, the subthemes such as CBF-Lyapunov integration, learning-compatible 

CBFs, robustness to uncertainties, and real-time implementation illustrate how CBFs are being 

adapted into learning systems. For instance, “learning-compatible CBFs” refer to 

parameterized or differentiable barrier constraints that can be trained jointly with policy 

networks. Robustness extensions address modeling errors or disturbances by embedding 

uncertainty margins within barrier constraints. Real-time implementation emphasizes 

computational tractability, especially when solving QP safety layers on embedded platforms. 

These subthemes correspond with critiques in recent safe RL surveys that CBF-based methods 

may struggle in complex environments or suffer from solver latency (Safe RL Review, 2023). 

Nonetheless, the pervasiveness of CBF integration in learning-based control confirms that 

barrier functions remain a go-to practical mechanism for enforcing safety. 

The third theme, formal guarantees and safety verification, surfaces the recognition that 

embedding safety within learning is insufficient without proofs or post-hoc validation. Many 

works included in our review incorporate verification steps, runtime assurance components, 
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or formal safety monitors. For example, runtime assurance architectures appear as 

supervisory controllers that can override unsafe actions or switch between safe controllers 

and learned policies, a pattern seen in learning-enabled systems more broadly. Certified 

learning architectures and symbolic verification methods also surfaced—approaches that 

embed proof-carrying policies or attempt to verify neural networks symbolically. 

These practices align with the broader push, in both control and formal methods 

communities, toward verifiable autonomy. As Goodloe (2022) argues, machine learning-

enabled systems must be equipped with assurances beyond empirical testing to satisfy safety-

critical deployment. Similarly, the review by Kushwaha & Biron (2025) emphasizes that RL-

based controllers must approach the theoretical guarantees that classical control methods 

provide. Our thematic analysis demonstrates that formal guarantees are increasingly treated 

not as optional add-ons, but as integral components of safe learning architectures. Yet, a 

tension remains: verification methods often struggle with high-dimensional or continuous 

state spaces, and cannot always scale or generalize. Thus many systems employ mixed 

strategies, e.g. runtime monitors combined with Lyapunov or barrier-based learning—a 

pattern evident in several of our coded sources. 

The fourth theme, applications and implementation challenges, captures how these 

methods fare in real-world or near-realistic settings, and what obstacles remain in bridging 

theory to practice. The reviewed works spanned domains such as robotics, autonomous 

vehicles, power systems, and multi-agent systems, confirming that safety-aware learning is 

not abstract but deeply application-driven. However, practical challenges like data efficiency, 

scalability, computational constraints, and benchmarking metrics repeatedly surfaced. For 

example, safe learning methods are particularly sample-inefficient when constrained to 

remain within safe sets; this limits their application to domains where data collection or 

exploration is expensive or risky. Scalability to higher-dimensional systems often requires 

modularization or decomposition strategies, a subtheme we observed in coding “scalability 

and generalization.” Real-time constraints, solver speed, and hardware limitations pose 

further barriers to deployment of safety filters or QP layers on embedded controllers, a 

challenge emphasized across several designs. Benchmarking also remains inconsistent, as 

different studies report varying safety violation metrics, convergence rates, or simulation 

results rather than standardized real-world validation. 

Taken together, these thematic results reveal an emerging landscape of hybrid strategy: 

learning-based controllers are augmented by stability constraints (Lyapunov), safety filters 

(barrier functions), and formal assurance layers. No single strategy suffices on its own; rather, 

progress depends on coherent integration of these approaches while addressing performance, 

scalability, and verification bottlenecks. In other words, safe learning in safety-critical control 

is evolving as a multi-component ecosystem, rather than a monolithic method. 
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