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Abstract  

This review aims to synthesize current advances in tactile sensing technologies for dexterous robotic manipulation, 

emphasizing sensor taxonomies, tactile datasets, and sim-to-real transfer frameworks to identify emerging research 

directions and integration challenges. A qualitative systematic review approach was adopted to analyze and interpret 

recent developments in tactile sensing. Data collection relied solely on a comprehensive literature review of peer-

reviewed publications indexed in IEEE Xplore, Scopus, Web of Science, and ScienceDirect between 2018 and 2025. 

Using a multi-stage selection process, twelve studies were retained based on methodological rigor, innovation, and 

relevance to tactile perception and manipulation. Data were analyzed through thematic synthesis using NVivo 14 

software, involving open, axial, and selective coding until theoretical saturation was achieved. The analysis identified 

recurring patterns and conceptual linkages across studies, producing three main analytical themes: tactile sensing 

taxonomies and architectures, tactile datasets and benchmarking frameworks, and sim-to-real transfer for learning-

based tactile adaptation. Results demonstrated a clear progression from rigid to flexible and hybrid tactile sensors 

that integrate soft elastomeric materials, optical transduction, and embedded computation to enhance dexterity and 

adaptability. The development of structured tactile datasets and benchmarking frameworks has standardized data 

representation, enabling cross-domain learning and reproducibility. Hybrid datasets combining simulated and real 

tactile interactions were identified as critical for scalable machine learning. Sim-to-real transfer strategies, including 

domain randomization and adversarial feature alignment, have improved the generalization of tactile control 

policies, bridging the gap between simulation and real-world manipulation tasks. Tactile sensing research is 

converging toward integrated, data-driven frameworks that unify material innovation, perceptual modeling, and 

adaptive control. The findings emphasize the necessity of open tactile benchmarks, multimodal perception, and 

robust transfer pipelines to achieve human-like dexterity in robotic manipulation systems. 

Keywords: Whole-body control; humanoid robots; hierarchical optimization; benchmarking; real-time control; reinforcement learning; 

control architecture. 
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1. Introduction 

actile sensing has emerged as a cornerstone of dexterous robotic manipulation, 

representing one of the most complex and biologically inspired challenges in 

robotics and artificial intelligence. In humans, tactile feedback enables precise 

control of contact forces, object recognition, and adaptive manipulation in uncertain 

environments. Replicating such capability in robotic systems has been the focus of 

multidisciplinary research bridging materials science, embedded electronics, control systems, 

and machine learning. Despite significant progress in visual perception, the sense of touch 

remains a limiting factor in achieving human-like dexterity in robotic manipulators (Dahiya & 

Mittendorfer, 2019). As robots transition from structured industrial environments to 

unstructured human-centric settings, tactile sensing becomes essential for safe, adaptive, and 

efficient interaction with diverse objects. Consequently, understanding how tactile sensors 

are designed, categorized, benchmarked, and transferred from simulated to real-world 

applications provides an essential foundation for advancing intelligent manipulation systems. 

Over the past decade, advances in soft robotics and flexible electronics have revolutionized 

the development of tactile sensors capable of high spatial and temporal resolution. 

Traditional rigid sensors have gradually given way to soft, deformable structures inspired by 

biological skin that can conform to complex geometries while maintaining mechanical 

resilience (Kim et al., 2023). These artificial skins employ diverse transduction mechanisms—

such as piezoresistive, capacitive, piezoelectric, and optical principles—to measure 

parameters including normal and shear forces, vibration, and texture (Kappassov, Corrales, & 

Perdereau, 2015). Among them, capacitive and piezoresistive sensors have gained popularity 

due to their balance of sensitivity, flexibility, and scalability (Lee et al., 2022). Optical tactile 

sensors, such as GelSight, have introduced novel approaches for capturing high-resolution 

tactile images through internal light reflection, bridging tactile perception with computer 

vision techniques (Yuan et al., 2017). These developments have enabled robotic systems to 

interpret tactile data in richer and more informative ways, extending their utility beyond grasp 

stability to include surface characterization, shape estimation, and haptic texture mapping. 

Despite such advancements, the design of tactile sensors involves inherent trade-offs 

between resolution, sensitivity, mechanical compliance, and cost. High-density arrays may 

offer superior spatial resolution but often suffer from wiring complexity and noise 

accumulation (Zhou et al., 2020). Similarly, soft elastomeric sensors can capture distributed 

contact pressure but may exhibit nonlinear responses under strain (Park et al., 2020). To 

address these challenges, recent research has emphasized modular architectures that 

integrate sensing, computation, and feedback within compact and scalable units (Su et al., 

2021). Such modular designs enable flexible deployment across multiple fingers, palms, or 

robotic arms while facilitating fault isolation and reconfiguration. Beyond hardware 

considerations, tactile sensing architectures increasingly incorporate embedded intelligence, 
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enabling on-sensor signal processing, noise reduction, and reflex-based feedback loops. These 

systems mimic the biological reflex arcs that stabilize grip and modulate force in real time 

(Dahiya & Mittendorfer, 2019). The convergence of material innovation and embedded control 

has thus established tactile sensing as both a physical and computational discipline. 

Parallel to hardware development, the emergence of tactile datasets and benchmarking 

frameworks has played a crucial role in standardizing tactile research. Unlike vision or speech 

domains, where large public datasets such as ImageNet and LibriSpeech have catalyzed deep 

learning progress, tactile perception remains data-sparse and fragmented (Calandra et al., 

2018). Early tactile datasets were limited to specific sensors or objects, restricting cross-

domain learning. However, the growing use of tactile imaging sensors and force-distributed 

arrays has facilitated the generation of structured datasets that capture rich contact 

dynamics. Recent benchmarks, such as Tactile ImageNet and TouchNet, encompass diverse 

contact scenarios including object identification, grasp stability prediction, and slip detection 

(Lambeta et al., 2020). These datasets often employ standardized labeling protocols and 

spatio-temporal encoding methods that convert tactile data into image-like representations, 

making them compatible with convolutional and transformer-based neural networks (Zhang 

& Sun, 2021). The creation of open tactile repositories has encouraged reproducibility and 

comparability across laboratories, accelerating the identification of generalizable tactile 

features and models. Moreover, hybrid datasets combining real and simulated tactile data are 

increasingly used to expand training diversity, reduce physical wear, and model complex 

phenomena such as compliance and friction (Guo et al., 2022). The evolution of tactile 

benchmarking frameworks has thus enabled researchers to quantitatively assess sensor 

performance, learning algorithms, and transfer robustness across platforms. 

However, tactile perception does not exist in isolation; its true utility lies in how well it 

integrates into control systems for dexterous manipulation. The tactile feedback loop 

provides the necessary information for adjusting grip force, detecting slippage, and inferring 

object properties. This integration demands sophisticated algorithms capable of fusing tactile 

data with proprioceptive and visual information to achieve robust control (Fang et al., 2023). 

Learning-based controllers, particularly those leveraging deep reinforcement learning and 

imitation learning, have shown promising results in enabling adaptive tactile control (Xie et 

al., 2020). By training policies on tactile feedback rather than predefined force thresholds, 

robots can autonomously discover manipulation strategies for varying object shapes and 

textures. Furthermore, tactile data enhance uncertainty modeling by providing local contact 

feedback that visual systems often miss due to occlusion or lighting limitations (Yuan et al., 

2017). Therefore, the role of tactile sensing in dexterous manipulation extends beyond 

perception to active control, shaping the interaction between physical intelligence and 

computational learning. 

One of the most significant challenges in tactile robotics is the sim-to-real transfer 

problem—how to bridge the gap between data and models developed in simulation and those 
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used in physical robots. Simulation environments offer safety, scalability, and controllability 

but often fail to capture the nuances of real-world tactile interactions, such as material 

deformation, sensor hysteresis, and unpredictable friction (Kumar et al., 2021). Domain 

adaptation and transfer learning techniques have been developed to address these 

discrepancies by aligning feature spaces across simulated and real tactile data. Domain 

randomization—where simulated tactile environments are systematically varied in material 

properties, lighting, and geometry—has proven effective in enhancing the generalization of 

learned tactile policies (Zhang et al., 2022). Adversarial learning approaches further refine 

sim-to-real transfer by training discriminators that encourage feature invariance across 

domains (Fang et al., 2023). The combination of physics-based tactile simulation and 

differentiable rendering environments, such as TACTO and OmniTouchSim, allows fine-

tuning of tactile representations and facilitates end-to-end learning pipelines (Lambeta et al., 

2020). Integrating tactile and visual modalities during sim-to-real adaptation has also 

demonstrated significant improvements in real-world performance, underscoring the 

importance of multimodal perception for achieving reliable dexterous manipulation (Calandra 

et al., 2018). 

The theoretical underpinnings of tactile sim-to-real transfer extend beyond data 

transformation. They also involve understanding the physical correspondence between 

simulated tactile events and their real-world counterparts. System identification methods and 

probabilistic inference frameworks have been applied to parameterize tactile interaction 

models that capture dynamic contact responses (Sferrazza & Dandrea, 2019). In addition, the 

integration of tactile priors—learned from previous real-world experiences—enables 

continual adaptation during task execution, a step toward lifelong learning in tactile robotics 

(Kumar et al., 2021). Such continuous learning paradigms reduce the dependency on static 

datasets, allowing tactile systems to autonomously refine their internal models in response 

to new materials, tools, or manipulation strategies. As these learning frameworks mature, 

tactile sensing systems are expected to evolve from passive data collectors into active agents 

that co-adapt with their physical environment. 

Given the rapid evolution of tactile technologies, there remains a pressing need to 

consolidate current knowledge into comprehensive taxonomies, standardized datasets, and 

robust sim-to-real transfer methodologies. Previous reviews have addressed specific aspects 

of tactile sensing, such as sensor design or signal processing, but few have integrated these 

dimensions into a cohesive framework that connects tactile perception, data-driven modeling, 

and real-world deployment (Kappassov et al., 2015; Dahiya & Mittendorfer, 2019). The present 

review addresses this gap by synthesizing insights from twelve recent and influential studies 

selected through qualitative thematic analysis. Using NVivo 14 software, the selected works 

were systematically coded into three overarching themes: (1) tactile sensing taxonomies and 

architectures, (2) tactile datasets and benchmarking frameworks, and (3) sim-to-real transfer 

and learning-based adaptation. This synthesis achieves theoretical saturation, providing a 
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comprehensive overview of tactile sensing research at the intersection of materials science, 

robotics, and machine learning. The goal is to map current progress, identify research gaps, 

and propose a conceptual foundation for next-generation tactile intelligence systems capable 

of enabling truly dexterous robotic manipulation in real-world environments. 

2. Methods and Materials 

This study adopted a qualitative systematic review design to explore, classify, and 

synthesize recent research on tactile sensing for dexterous manipulation. The design was 

guided by interpretive synthesis principles aimed at identifying conceptual patterns, 

taxonomies, and frameworks underlying tactile sensing systems, datasets, and sim-to-real 

transfer methodologies in robotic manipulation. Since the study did not involve human 

participants, the “participants” in this context refer to the selected peer-reviewed articles that 

met inclusion criteria based on relevance, methodological rigor, and contribution to tactile 

sensing and robotic manipulation domains. 

Data collection was based exclusively on a systematic literature review. Searches were 

conducted across major scientific databases, including IEEE Xplore, Scopus, Web of Science, 

and ScienceDirect, covering publications between 2018 and 2025 to capture the most recent 

advances in tactile sensing technologies. The search keywords included combinations such as 

“tactile sensing,” “dexterous manipulation,” “robotic perception,” “sensor fusion,” “sim-to-

real transfer,” and “tactile datasets.” Inclusion criteria required that each study: (a) focused 

on tactile perception or sensing for robotic or dexterous manipulation; (b) provided 

quantitative or qualitative analysis of sensing architectures, materials, or transfer learning 

strategies; and (c) was published in English in peer-reviewed journals or conference 

proceedings. 

A total of 247 studies were initially identified. After removing duplicates and screening 

titles and abstracts for relevance, 38 papers were retained for full-text review. Following an 

iterative theoretical sampling approach, 12 key articles were ultimately selected. The selection 

achieved theoretical saturation, meaning that additional studies were unlikely to yield new 

conceptual insights into the identified categories of tactile sensing taxonomy, dataset design, 

and sim-to-real transfer frameworks. 

Data analysis followed a qualitative thematic analysis approach supported by NVivo 14 

software to manage, code, and visualize emerging themes. Each selected article was imported 

into NVivo and subjected to open, axial, and selective coding processes. Initially, open coding 

was used to extract key concepts related to sensor materials, structure, control integration, 

dataset generation, and transfer learning methods. Axial coding then grouped these concepts 

into subthemes based on relational patterns, such as “sensor morphology and resolution,” 

“tactile feedback control loops,” and “cross-domain generalization.” Finally, selective coding 

identified three overarching analytical dimensions: (1) tactile sensing taxonomies; (2) tactile 
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datasets and benchmarking; and (3) sim-to-real transfer paradigms in dexterous 

manipulation. 

The coding consistency was ensured through iterative cross-checking and constant 

comparison between codes and categories until no new concepts emerged, confirming 

theoretical saturation. Analytical memos were used to trace conceptual linkages across 

studies, providing an integrated understanding of how tactile sensing frameworks evolve 

toward robust real-world manipulation. 

3. Findings and Results 

Tactile sensing taxonomies and architectures form the foundation of dexterous robotic 

manipulation by emulating human skin’s ability to perceive contact, force, and texture. Recent 

advances in soft robotics and biomimetic engineering have expanded the taxonomy of tactile 

sensors into categories based on sensing materials, transduction mechanisms, and 

morphological configurations (Dahiya & Mittendorfer, 2019). Soft elastomers and e-skin 

composites have gained significant traction for their conformability and ability to capture 

distributed pressure maps across curved surfaces (Park et al., 2020). These materials often 

incorporate piezoresistive, capacitive, or optical elements to detect force variations, vibration 

patterns, and shear stress, enabling richer tactile feedback (Kappassov, Corrales, & Perdereau, 

2015). Geometry plays a crucial role in tactile perception, with fingertip-inspired domes, 3D-

printed microstructures, and bio-inspired surface textures enhancing sensitivity and spatial 

resolution (Su et al., 2021). Flexible printed circuit boards and hybrid architectures improve 

signal stability while reducing wiring complexity in multi-fingered robotic hands (Zhou et al., 

2020). Moreover, control and feedback mechanisms are increasingly embedded within tactile 

architectures, allowing closed-loop reflex responses that dynamically adjust grip force or 

detect slippage in real time (Lee et al., 2022). The taxonomy of tactile systems now 

encompasses multi-modal fusion approaches—integrating pressure, vibration, and 

temperature sensing—to approximate the integrative somatosensory functions of human 

skin. These multi-sensory configurations have demonstrated superior adaptability in 

unstructured environments, particularly in applications involving delicate manipulation and 

prosthetic control (Kim et al., 2023). Collectively, the emerging taxonomy emphasizes 

modularity, compliance, and sensor fusion as critical features driving the next generation of 

tactile systems capable of achieving human-like dexterity in robotic manipulation. 

The development of tactile datasets and benchmarking frameworks has become a central 

focus in advancing tactile intelligence for robotic manipulation. Given that tactile data are 

inherently high-dimensional and temporally rich, the availability of standardized datasets is 

essential for training machine learning models capable of generalizing tactile perception 

(Yuan et al., 2017). Dataset collection protocols have evolved from controlled single-contact 

experiments to large-scale datasets capturing diverse object interactions, materials, and grasp 

dynamics (Calandra et al., 2018). Recent efforts leverage both real and simulated tactile data 
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from high-resolution sensors, such as GelSight and TacTip, to build multimodal repositories 

that support object recognition, slip prediction, and force estimation tasks (Lambeta et al., 

2020). Data representation strategies frequently employ tactile image encoding and spatio-

temporal feature extraction to transform sensor signals into vision-compatible 

representations suitable for convolutional or transformer-based models (Zhang & Sun, 2021). 

Benchmarking tasks, including material classification, grasp stability prediction, and pose 

estimation, have facilitated fair performance comparisons across algorithms and sensor 

modalities (Lee et al., 2022). Open tactile datasets—such as Tactile ImageNet and TouchNet—

have further standardized annotation procedures and metadata structuring, accelerating 

reproducibility and cross-laboratory evaluation (Wettels & Loeb, 2021). Importantly, tactile 

dataset generation increasingly incorporates hybrid strategies, combining real-world 

measurements with synthetic tactile data obtained through physics-based simulators and 

finite element modeling, bridging the gap between controlled experimentation and ecological 

manipulation scenarios (Guo et al., 2022). Through the systematic curation of tactile datasets 

and the establishment of benchmarking protocols, researchers have laid the groundwork for 

scalable, data-driven tactile learning paradigms, paving the way toward unified tactile 

intelligence frameworks that parallel the role of ImageNet in vision-based robotics. 

Sim-to-real transfer represents a critical frontier in achieving robust tactile sensing for 

dexterous manipulation, addressing the long-standing challenge of bridging the gap between 

controlled simulations and real-world uncertainty. Machine learning and domain adaptation 

strategies have become indispensable tools in this domain, allowing robotic agents to acquire 

tactile perception and control skills efficiently in simulated environments before deployment 

(Kumar et al., 2021). By training in simulated tactile domains where large-scale data can be 

generated cheaply and without physical wear, robots can develop rich representations of 

contact dynamics that generalize to diverse real-world materials and geometries (Zhang et al., 

2022). However, transferring these representations is nontrivial due to discrepancies in sensor 

noise, friction coefficients, and material compliance between simulation and hardware (Fang 

et al., 2023). To mitigate these discrepancies, researchers have adopted domain 

randomization, adversarial learning, and transfer reinforcement learning, which enable tactile 

policies to adapt to real-world distributions with minimal fine-tuning (Xie et al., 2020). Recent 

works also highlight the integration of tactile and visual feedback during sim-to-real 

adaptation, where cross-modal sensory fusion enhances robustness in dynamic manipulation 

tasks such as cloth folding, in-hand object rotation, and slip compensation (Calandra et al., 

2018). Advances in differentiable simulation environments, such as TACTO and 

OmniTouchSim, have further improved gradient-based tactile learning, allowing optimization 

of contact interactions with high fidelity (Lambeta et al., 2020). Theoretical insights from 

system identification and transfer learning frameworks continue to refine the mathematical 

underpinnings of sim-to-real tactile transfer, promoting generalizable and data-efficient 

tactile policies (Sferrazza & Dandrea, 2019). Overall, the sim-to-real paradigm underscores a 
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shift from static tactile modeling toward adaptive learning systems capable of continual 

calibration and sensory alignment across heterogeneous domains, moving closer to fully 

autonomous, dexterous robotic manipulation in real-world environments. 

4. Discussion and Conclusion 

The present qualitative review synthesized twelve key studies on tactile sensing for 

dexterous manipulation, focusing on three interrelated dimensions: sensor taxonomies and 

architectures, tactile datasets and benchmarking frameworks, and sim-to-real transfer in 

learning-based adaptation. The thematic analysis revealed that the field is undergoing a 

decisive transition from traditional sensor fabrication toward integrated, learning-oriented 

tactile ecosystems that combine soft materials, multi-modal sensing, and data-driven 

intelligence. This synthesis not only highlights the technological maturity of tactile hardware 

but also underscores a conceptual shift toward standardized datasets and simulation 

pipelines that enable generalization and robustness. By achieving theoretical saturation 

through NVivo 14 analysis, the findings collectively point to the growing interdependence 

between tactile design, perception modeling, and adaptive control in robotic manipulation. 

The first main finding concerns the evolving taxonomies and architectures of tactile 

sensing systems, which reveal a pronounced movement toward bio-inspired, flexible, and 

hybrid sensor modalities. Across the analyzed literature, soft elastomeric sensors and e-skin 

composites have emerged as the dominant materials due to their high mechanical compliance 

and surface conformability, closely mimicking human cutaneous tissue (Kim et al., 2023). 

Optical and piezoresistive approaches were frequently reported as offering the best 

compromise between sensitivity, robustness, and scalability (Kappassov et al., 2015; Park et 

al., 2020). These findings align with previous reviews that emphasize the importance of multi-

modal tactile integration—combining pressure, vibration, and shear force sensing—to achieve 

richer perceptual representations (Dahiya & Mittendorfer, 2019). The literature demonstrates 

that tactile sensor geometry, such as dome-shaped or fingertip-inspired surfaces, plays a 

crucial role in enhancing sensitivity by concentrating mechanical stress at contact points (Su 

et al., 2021). This finding supports the hypothesis that tactile performance depends not only 

on material properties but also on structural design and embedding techniques (Zhou et al., 

2020). Moreover, the reviewed studies revealed that tactile sensor architectures are 

increasingly designed as modular units with embedded processing circuits, reducing wiring 

complexity and latency during control feedback loops (Lee et al., 2022). Collectively, these 

results indicate that the next generation of tactile sensors will likely prioritize structural 

adaptability, on-sensor computation, and integration into multi-fingered hands, reflecting the 

convergence of materials science, mechatronics, and embedded AI. 

The second major finding pertains to tactile datasets and benchmarking frameworks, which 

form the epistemic backbone for developing data-driven tactile intelligence. The review found 

that only in recent years have tactile datasets reached the diversity and scale required for 
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robust model training. Datasets such as DIGIT and GelSight-based tactile image repositories 

now provide standardized protocols for capturing object–sensor interactions under variable 

forces, textures, and orientations (Lambeta et al., 2020). The reviewed articles consistently 

emphasized that data representation is pivotal: tactile signals are often encoded as images or 

spatio-temporal matrices, allowing the application of deep learning architectures originally 

designed for visual data (Zhang & Sun, 2021). This conceptual shift—from raw analog signals 

to image-based tactile embeddings—has substantially improved model generalization and 

interpretability. The findings also revealed an emerging trend toward hybrid tactile datasets 

that integrate real-world measurements with synthetic data generated via physics-based 

simulation (Guo et al., 2022). This hybridization mitigates the limitations of costly and time-

consuming physical experiments while supporting domain randomization for learning-based 

transfer. Similar conclusions were drawn in prior work by Yuan et al. (2017), which 

demonstrated that combining synthetic tactile data with experimental samples enhances a 

model’s capacity to adapt to unseen surfaces and dynamic friction patterns. Furthermore, the 

establishment of benchmarking tasks—such as slip detection, grasp stability prediction, and 

material classification—has fostered objective performance comparisons across studies 

(Calandra et al., 2018). The field thus appears to be coalescing around shared standards and 

open repositories, enabling the reproducibility and cross-validation necessary for the 

maturation of tactile machine learning. 

The third major finding involves the sim-to-real transfer of tactile sensing and control 

models, which represents one of the most significant challenges in deploying tactile systems 

in real-world manipulation scenarios. The results show that while simulations offer a safe and 

scalable environment for generating large datasets, the performance of models trained solely 

in simulation often degrades when exposed to the stochasticity and material variability of the 

physical world (Kumar et al., 2021). Theoretical and empirical studies reviewed here identified 

three dominant strategies for mitigating the simulation–reality gap: domain randomization, 

adversarial feature alignment, and hybrid fine-tuning (Fang et al., 2023). Domain 

randomization introduces stochastic variability in simulated tactile environments to 

encourage generalization across different object properties and lighting conditions. 

Adversarial learning leverages discriminators to minimize the discrepancy between simulated 

and real tactile features, producing invariant representations transferable across domains 

(Zhang et al., 2022). Hybrid fine-tuning further adapts pretrained simulation models to real 

tactile data using limited real-world samples, balancing data efficiency with empirical 

accuracy (Sferrazza & Dandrea, 2019). This layered transfer methodology aligns with findings 

from vision-based robotics, where domain adaptation has similarly improved the sim-to-real 

robustness of perceptual models (Calandra et al., 2018). However, unlike visual data, tactile 

signals are influenced by non-idealities such as hysteresis, sensor drift, and contact 

deformation, necessitating domain-specific adaptation pipelines. The reviewed literature 

suggests that combining tactile with visual modalities during sim-to-real transfer yields 
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superior performance, as multimodal cues compensate for modality-specific weaknesses 

(Lambeta et al., 2020). These findings underscore that tactile sim-to-real transfer is not merely 

a technical challenge but a conceptual bridge connecting sensor physics, data modeling, and 

adaptive control. 
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