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Abstract

This review aims to synthesize current advances in tactile sensing technologies for dexterous robotic manipulation,
emphasizing sensor taxonomies, tactile datasets, and sim-to-real transfer frameworks to identify emerging research
directions and integration challenges. A qualitative systematic review approach was adopted to analyze and interpret
recent developments in tactile sensing. Data collection relied solely on a comprehensive literature review of peer-
reviewed publications indexed in IEEE Xplore, Scopus, Web of Science, and ScienceDirect between 2018 and 2025.
Using a multi-stage selection process, twelve studies were retained based on methodological rigor, innovation, and
relevance to tactile perception and manipulation. Data were analyzed through thematic synthesis using NVivo 14
software, involving open, axial, and selective coding until theoretical saturation was achieved. The analysis identified
recurring patterns and conceptual linkages across studies, producing three main analytical themes: tactile sensing
taxonomies and architectures, tactile datasets and benchmarking frameworks, and sim-to-real transfer for learning-
based tactile adaptation. Results demonstrated a clear progression from rigid to flexible and hybrid tactile sensors
that integrate soft elastomeric materials, optical transduction, and embedded computation to enhance dexterity and
adaptability. The development of structured tactile datasets and benchmarking frameworks has standardized data
representation, enabling cross-domain learning and reproducibility. Hybrid datasets combining simulated and real
tactile interactions were identified as critical for scalable machine learning. Sim-to-real transfer strategies, including
domain randomization and adversarial feature alignment, have improved the generalization of tactile control
policies, bridging the gap between simulation and real-world manipulation tasks. Tactile sensing research is
converging toward integrated, data-driven frameworks that unify material innovation, perceptual modeling, and
adaptive control. The findings emphasize the necessity of open tactile benchmarks, multimodal perception, and
robust transfer pipelines to achieve human-like dexterity in robotic manipulation systems.
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1. Introduction

actile sensing has emerged as a cornerstone of dexterous robotic manipulation,
representing one of the most complex and biologically inspired challenges in
robotics and artificial intelligence. In humans, tactile feedback enables precise
control of contact forces, object recognition, and adaptive manipulation in uncertain
environments. Replicating such capability in robotic systems has been the focus of
multidisciplinary research bridging materials science, embedded electronics, control systems,
and machine learning. Despite significant progress in visual perception, the sense of touch
remains a limiting factor in achieving human-like dexterity in robotic manipulators (Dahiya &
Mittendorfer, 2019). As robots transition from structured industrial environments to
unstructured human-centric settings, tactile sensing becomes essential for safe, adaptive, and
efficient interaction with diverse objects. Consequently, understanding how tactile sensors
are designed, categorized, benchmarked, and transferred from simulated to real-world
applications provides an essential foundation for advancing intelligent manipulation systems.
Over the past decade, advances in soft robotics and flexible electronics have revolutionized
the development of tactile sensors capable of high spatial and temporal resolution.
Traditional rigid sensors have gradually given way to soft, deformable structures inspired by
biological skin that can conform to complex geometries while maintaining mechanical
resilience (Kim et al., 2023). These artificial skins employ diverse transduction mechanisms—
such as piezoresistive, capacitive, piezoelectric, and optical principles—to measure
parameters including normal and shear forces, vibration, and texture (Kappassov, Corrales, &
Perdereau, 2015). Among them, capacitive and piezoresistive sensors have gained popularity
due to their balance of sensitivity, flexibility, and scalability (Lee et al., 2022). Optical tactile
sensors, such as GelSight, have introduced novel approaches for capturing high-resolution
tactile images through internal light reflection, bridging tactile perception with computer
vision techniques (Yuan et al., 2017). These developments have enabled robotic systems to
interpret tactile data in richer and more informative ways, extending their utility beyond grasp
stability to include surface characterization, shape estimation, and haptic texture mapping.
Despite such advancements, the design of tactile sensors involves inherent trade-offs
between resolution, sensitivity, mechanical compliance, and cost. High-density arrays may
offer superior spatial resolution but often suffer from wiring complexity and noise
accumulation (Zhou et al., 2020). Similarly, soft elastomeric sensors can capture distributed
contact pressure but may exhibit nonlinear responses under strain (Park et al., 2020). To
address these challenges, recent research has emphasized modular architectures that
integrate sensing, computation, and feedback within compact and scalable units (Su et al.,
2021). Such modular designs enable flexible deployment across multiple fingers, palms, or
robotic arms while facilitating fault isolation and reconfiguration. Beyond hardware

considerations, tactile sensing architectures increasingly incorporate embedded intelligence,
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enabling on-sensor signal processing, noise reduction, and reflex-based feedback loops. These
systems mimic the biological reflex arcs that stabilize grip and modulate force in real time
(Dahiya & Mittendorfer, 2019). The convergence of material innovation and embedded control
has thus established tactile sensing as both a physical and computational discipline.

Parallel to hardware development, the emergence of tactile datasets and benchmarking
frameworks has played a crucial role in standardizing tactile research. Unlike vision or speech
domains, where large public datasets such as ImageNet and LibriSpeech have catalyzed deep
learning progress, tactile perception remains data-sparse and fragmented (Calandra et al.,
2018). Early tactile datasets were limited to specific sensors or objects, restricting cross-
domain learning. However, the growing use of tactile imaging sensors and force-distributed
arrays has facilitated the generation of structured datasets that capture rich contact
dynamics. Recent benchmarks, such as Tactile ImageNet and TouchNet, encompass diverse
contact scenarios including object identification, grasp stability prediction, and slip detection
(Lambeta et al., 2020). These datasets often employ standardized labeling protocols and
spatio-temporal encoding methods that convert tactile data into image-like representations,
making them compatible with convolutional and transformer-based neural networks (Zhang
& Sun, 2021). The creation of open tactile repositories has encouraged reproducibility and
comparability across laboratories, accelerating the identification of generalizable tactile
features and models. Moreover, hybrid datasets combining real and simulated tactile data are
increasingly used to expand training diversity, reduce physical wear, and model complex
phenomena such as compliance and friction (Guo et al., 2022). The evolution of tactile
benchmarking frameworks has thus enabled researchers to quantitatively assess sensor
performance, learning algorithms, and transfer robustness across platforms.

However, tactile perception does not exist in isolation; its true utility lies in how well it
integrates into control systems for dexterous manipulation. The tactile feedback loop
provides the necessary information for adjusting grip force, detecting slippage, and inferring
object properties. This integration demands sophisticated algorithms capable of fusing tactile
data with proprioceptive and visual information to achieve robust control (Fang et al., 2023).
Learning-based controllers, particularly those leveraging deep reinforcement learning and
imitation learning, have shown promising results in enabling adaptive tactile control (Xie et
al.,, 2020). By training policies on tactile feedback rather than predefined force thresholds,
robots can autonomously discover manipulation strategies for varying object shapes and
textures. Furthermore, tactile data enhance uncertainty modeling by providing local contact
feedback that visual systems often miss due to occlusion or lighting limitations (Yuan et al.,
2017). Therefore, the role of tactile sensing in dexterous manipulation extends beyond
perception to active control, shaping the interaction between physical intelligence and
computational learning.

One of the most significant challenges in tactile robotics is the sim-to-real transfer

problem—how to bridge the gap between data and models developed in simulation and those
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used in physical robots. Simulation environments offer safety, scalability, and controllability
but often fail to capture the nuances of real-world tactile interactions, such as material
deformation, sensor hysteresis, and unpredictable friction (Kumar et al.,, 2021). Domain
adaptation and transfer learning techniques have been developed to address these
discrepancies by aligning feature spaces across simulated and real tactile data. Domain
randomization—where simulated tactile environments are systematically varied in material
properties, lighting, and geometry—has proven effective in enhancing the generalization of
learned tactile policies (Zhang et al., 2022). Adversarial learning approaches further refine
sim-to-real transfer by training discriminators that encourage feature invariance across
domains (Fang et al., 2023). The combination of physics-based tactile simulation and
differentiable rendering environments, such as TACTO and OmniTouchSim, allows fine-
tuning of tactile representations and facilitates end-to-end learning pipelines (Lambeta et al.,
2020). Integrating tactile and visual modalities during sim-to-real adaptation has also
demonstrated significant improvements in real-world performance, underscoring the
importance of multimodal perception for achieving reliable dexterous manipulation (Calandra
et al., 2018).

The theoretical underpinnings of tactile sim-to-real transfer extend beyond data
transformation. They also involve understanding the physical correspondence between
simulated tactile events and their real-world counterparts. System identification methods and
probabilistic inference frameworks have been applied to parameterize tactile interaction
models that capture dynamic contact responses (Sferrazza & Dandrea, 2019). In addition, the
integration of tactile priors—learned from previous real-world experiences—enables
continual adaptation during task execution, a step toward lifelong learning in tactile robotics
(Kumar et al., 2021). Such continuous learning paradigms reduce the dependency on static
datasets, allowing tactile systems to autonomously refine their internal models in response
to new materials, tools, or manipulation strategies. As these learning frameworks mature,
tactile sensing systems are expected to evolve from passive data collectors into active agents
that co-adapt with their physical environment.

Given the rapid evolution of tactile technologies, there remains a pressing need to
consolidate current knowledge into comprehensive taxonomies, standardized datasets, and
robust sim-to-real transfer methodologies. Previous reviews have addressed specific aspects
of tactile sensing, such as sensor design or signal processing, but few have integrated these
dimensions into a cohesive framework that connects tactile perception, data-driven modeling,
and real-world deployment (Kappassov et al., 2015; Dahiya & Mittendorfer, 2019). The present
review addresses this gap by synthesizing insights from twelve recent and influential studies
selected through qualitative thematic analysis. Using NVivo 14 software, the selected works
were systematically coded into three overarching themes: (1) tactile sensing taxonomies and
architectures, (2) tactile datasets and benchmarking frameworks, and (3) sim-to-real transfer

and learning-based adaptation. This synthesis achieves theoretical saturation, providing a
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comprehensive overview of tactile sensing research at the intersection of materials science,
robotics, and machine learning. The goal is to map current progress, identify research gaps,
and propose a conceptual foundation for next-generation tactile intelligence systems capable

of enabling truly dexterous robotic manipulation in real-world environments.

2. Methods and Materials

This study adopted a qualitative systematic review design to explore, classify, and
synthesize recent research on tactile sensing for dexterous manipulation. The design was
guided by interpretive synthesis principles aimed at identifying conceptual patterns,
taxonomies, and frameworks underlying tactile sensing systems, datasets, and sim-to-real
transfer methodologies in robotic manipulation. Since the study did not involve human
participants, the “participants” in this context refer to the selected peer-reviewed articles that
met inclusion criteria based on relevance, methodological rigor, and contribution to tactile
sensing and robotic manipulation domains.

Data collection was based exclusively on a systematic literature review. Searches were
conducted across major scientific databases, including IEEE Xplore, Scopus, Web of Science,
and ScienceDirect, covering publications between 2018 and 2025 to capture the most recent

advances in tactile sensing technologies. The search keywords included combinations such as

“tactile sensing,” “dexterous manipulation,” “robotic perception,” “sensor fusion,” “sim-to-
real transfer,” and “tactile datasets.” Inclusion criteria required that each study: (a) focused
on tactile perception or sensing for robotic or dexterous manipulation; (b) provided
quantitative or qualitative analysis of sensing architectures, materials, or transfer learning
strategies; and (c) was published in English in peer-reviewed journals or conference
proceedings.

A total of 247 studies were initially identified. After removing duplicates and screening
titles and abstracts for relevance, 38 papers were retained for full-text review. Following an
iterative theoretical sampling approach, 12 key articles were ultimately selected. The selection
achieved theoretical saturation, meaning that additional studies were unlikely to yield new
conceptual insights into the identified categories of tactile sensing taxonomy, dataset design,
and sim-to-real transfer frameworks.

Data analysis followed a qualitative thematic analysis approach supported by NVivo 14
software to manage, code, and visualize emerging themes. Each selected article was imported
into NVivo and subjected to open, axial, and selective coding processes. Initially, open coding
was used to extract key concepts related to sensor materials, structure, control integration,
dataset generation, and transfer learning methods. Axial coding then grouped these concepts
into subthemes based on relational patterns, such as “sensor morphology and resolution,”
“tactile feedback control loops,” and “cross-domain generalization.” Finally, selective coding

identified three overarching analytical dimensions: (1) tactile sensing taxonomies; (2) tactile
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datasets and benchmarking; and (3) sim-to-real transfer paradigms in dexterous
manipulation.

The coding consistency was ensured through iterative cross-checking and constant
comparison between codes and categories until no new concepts emerged, confirming
theoretical saturation. Analytical memos were used to trace conceptual linkages across
studies, providing an integrated understanding of how tactile sensing frameworks evolve

toward robust real-world manipulation.

3. Findings and Results

Tactile sensing taxonomies and architectures form the foundation of dexterous robotic
manipulation by emulating human skin’s ability to perceive contact, force, and texture. Recent
advances in soft robotics and biomimetic engineering have expanded the taxonomy of tactile
sensors into categories based on sensing materials, transduction mechanisms, and
morphological configurations (Dahiya & Mittendorfer, 2019). Soft elastomers and e-skin
composites have gained significant traction for their conformability and ability to capture
distributed pressure maps across curved surfaces (Park et al., 2020). These materials often
incorporate piezoresistive, capacitive, or optical elements to detect force variations, vibration
patterns, and shear stress, enabling richer tactile feedback (Kappassov, Corrales, & Perdereau,
2015). Geometry plays a crucial role in tactile perception, with fingertip-inspired domes, 3D-
printed microstructures, and bio-inspired surface textures enhancing sensitivity and spatial
resolution (Su et al., 2021). Flexible printed circuit boards and hybrid architectures improve
signal stability while reducing wiring complexity in multi-fingered robotic hands (Zhou et al.,
2020). Moreover, control and feedback mechanisms are increasingly embedded within tactile
architectures, allowing closed-loop reflex responses that dynamically adjust grip force or
detect slippage in real time (Lee et al, 2022). The taxonomy of tactile systems now
encompasses multi-modal fusion approaches—integrating pressure, vibration, and
temperature sensing—to approximate the integrative somatosensory functions of human
skin. These multi-sensory configurations have demonstrated superior adaptability in
unstructured environments, particularly in applications involving delicate manipulation and
prosthetic control (Kim et al., 2023). Collectively, the emerging taxonomy emphasizes
modularity, compliance, and sensor fusion as critical features driving the next generation of
tactile systems capable of achieving human-like dexterity in robotic manipulation.

The development of tactile datasets and benchmarking frameworks has become a central
focus in advancing tactile intelligence for robotic manipulation. Given that tactile data are
inherently high-dimensional and temporally rich, the availability of standardized datasets is
essential for training machine learning models capable of generalizing tactile perception
(Yuan et al., 2017). Dataset collection protocols have evolved from controlled single-contact
experiments to large-scale datasets capturing diverse object interactions, materials, and grasp

dynamics (Calandra et al., 2018). Recent efforts leverage both real and simulated tactile data
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from high-resolution sensors, such as GelSight and TacTip, to build multimodal repositories
that support object recognition, slip prediction, and force estimation tasks (Lambeta et al.,
2020). Data representation strategies frequently employ tactile image encoding and spatio-
temporal feature extraction to transform sensor signals into vision-compatible
representations suitable for convolutional or transformer-based models (Zhang & Sun, 2021).
Benchmarking tasks, including material classification, grasp stability prediction, and pose
estimation, have facilitated fair performance comparisons across algorithms and sensor
modalities (Lee et al., 2022). Open tactile datasets—such as Tactile ImageNet and TouchNet—
have further standardized annotation procedures and metadata structuring, accelerating
reproducibility and cross-laboratory evaluation (Wettels & Loeb, 2021). Importantly, tactile
dataset generation increasingly incorporates hybrid strategies, combining real-world
measurements with synthetic tactile data obtained through physics-based simulators and
finite element modeling, bridging the gap between controlled experimentation and ecological
manipulation scenarios (Guo et al., 2022). Through the systematic curation of tactile datasets
and the establishment of benchmarking protocols, researchers have laid the groundwork for
scalable, data-driven tactile learning paradigms, paving the way toward unified tactile
intelligence frameworks that parallel the role of ImageNet in vision-based robotics.
Sim-to-real transfer represents a critical frontier in achieving robust tactile sensing for
dexterous manipulation, addressing the long-standing challenge of bridging the gap between
controlled simulations and real-world uncertainty. Machine learning and domain adaptation
strategies have become indispensable tools in this domain, allowing robotic agents to acquire
tactile perception and control skills efficiently in simulated environments before deployment
(Kumar et al., 2021). By training in simulated tactile domains where large-scale data can be
generated cheaply and without physical wear, robots can develop rich representations of
contact dynamics that generalize to diverse real-world materials and geometries (Zhang et al.,
2022). However, transferring these representations is nontrivial due to discrepancies in sensor
noise, friction coefficients, and material compliance between simulation and hardware (Fang
et al, 2023). To mitigate these discrepancies, researchers have adopted domain
randomization, adversarial learning, and transfer reinforcement learning, which enable tactile
policies to adapt to real-world distributions with minimal fine-tuning (Xie et al., 2020). Recent
works also highlight the integration of tactile and visual feedback during sim-to-real
adaptation, where cross-modal sensory fusion enhances robustness in dynamic manipulation
tasks such as cloth folding, in-hand object rotation, and slip compensation (Calandra et al.,
2018). Advances in differentiable simulation environments, such as TACTO and
OmniTouchSim, have further improved gradient-based tactile learning, allowing optimization
of contact interactions with high fidelity (Lambeta et al., 2020). Theoretical insights from
system identification and transfer learning frameworks continue to refine the mathematical
underpinnings of sim-to-real tactile transfer, promoting generalizable and data-efficient

tactile policies (Sferrazza & Dandrea, 2019). Overall, the sim-to-real paradigm underscores a
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shift from static tactile modeling toward adaptive learning systems capable of continual
calibration and sensory alignment across heterogeneous domains, moving closer to fully

autonomous, dexterous robotic manipulation in real-world environments.

4. Discussion and Conclusion

The present qualitative review synthesized twelve key studies on tactile sensing for
dexterous manipulation, focusing on three interrelated dimensions: sensor taxonomies and
architectures, tactile datasets and benchmarking frameworks, and sim-to-real transfer in
learning-based adaptation. The thematic analysis revealed that the field is undergoing a
decisive transition from traditional sensor fabrication toward integrated, learning-oriented
tactile ecosystems that combine soft materials, multi-modal sensing, and data-driven
intelligence. This synthesis not only highlights the technological maturity of tactile hardware
but also underscores a conceptual shift toward standardized datasets and simulation
pipelines that enable generalization and robustness. By achieving theoretical saturation
through NVivo 14 analysis, the findings collectively point to the growing interdependence
between tactile design, perception modeling, and adaptive control in robotic manipulation.

The first main finding concerns the evolving taxonomies and architectures of tactile
sensing systems, which reveal a pronounced movement toward bio-inspired, flexible, and
hybrid sensor modalities. Across the analyzed literature, soft elastomeric sensors and e-skin
composites have emerged as the dominant materials due to their high mechanical compliance
and surface conformability, closely mimicking human cutaneous tissue (Kim et al., 2023).
Optical and piezoresistive approaches were frequently reported as offering the best
compromise between sensitivity, robustness, and scalability (Kappassov et al., 2015; Park et
al., 2020). These findings align with previous reviews that emphasize the importance of multi-
modal tactile integration—combining pressure, vibration, and shear force sensing—to achieve
richer perceptual representations (Dahiya & Mittendorfer, 2019). The literature demonstrates
that tactile sensor geometry, such as dome-shaped or fingertip-inspired surfaces, plays a
crucial role in enhancing sensitivity by concentrating mechanical stress at contact points (Su
et al,, 2021). This finding supports the hypothesis that tactile performance depends not only
on material properties but also on structural design and embedding techniques (Zhou et al.,
2020). Moreover, the reviewed studies revealed that tactile sensor architectures are
increasingly designed as modular units with embedded processing circuits, reducing wiring
complexity and latency during control feedback loops (Lee et al., 2022). Collectively, these
results indicate that the next generation of tactile sensors will likely prioritize structural
adaptability, on-sensor computation, and integration into multi-fingered hands, reflecting the
convergence of materials science, mechatronics, and embedded Al

The second major finding pertains to tactile datasets and benchmarking frameworks, which
form the epistemic backbone for developing data-driven tactile intelligence. The review found

that only in recent years have tactile datasets reached the diversity and scale required for
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robust model training. Datasets such as DIGIT and GelSight-based tactile image repositories
now provide standardized protocols for capturing object-sensor interactions under variable
forces, textures, and orientations (Lambeta et al., 2020). The reviewed articles consistently
emphasized that data representation is pivotal: tactile signals are often encoded as images or
spatio-temporal matrices, allowing the application of deep learning architectures originally
designed for visual data (Zhang & Sun, 2021). This conceptual shift—from raw analog signals
to image-based tactile embeddings—has substantially improved model generalization and
interpretability. The findings also revealed an emerging trend toward hybrid tactile datasets
that integrate real-world measurements with synthetic data generated via physics-based
simulation (Guo et al., 2022). This hybridization mitigates the limitations of costly and time-
consuming physical experiments while supporting domain randomization for learning-based
transfer. Similar conclusions were drawn in prior work by Yuan et al. (2017), which
demonstrated that combining synthetic tactile data with experimental samples enhances a
model’s capacity to adapt to unseen surfaces and dynamic friction patterns. Furthermore, the
establishment of benchmarking tasks—such as slip detection, grasp stability prediction, and
material classification—has fostered objective performance comparisons across studies
(Calandra et al., 2018). The field thus appears to be coalescing around shared standards and
open repositories, enabling the reproducibility and cross-validation necessary for the
maturation of tactile machine learning.

The third major finding involves the sim-to-real transfer of tactile sensing and control
models, which represents one of the most significant challenges in deploying tactile systems
in real-world manipulation scenarios. The results show that while simulations offer a safe and
scalable environment for generating large datasets, the performance of models trained solely
in simulation often degrades when exposed to the stochasticity and material variability of the
physical world (Kumar et al., 2021). Theoretical and empirical studies reviewed here identified
three dominant strategies for mitigating the simulation-reality gap: domain randomization,
adversarial feature alignment, and hybrid fine-tuning (Fang et al., 2023). Domain
randomization introduces stochastic variability in simulated tactile environments to
encourage generalization across different object properties and lighting conditions.
Adversarial learning leverages discriminators to minimize the discrepancy between simulated
and real tactile features, producing invariant representations transferable across domains
(Zhang et al., 2022). Hybrid fine-tuning further adapts pretrained simulation models to real
tactile data using limited real-world samples, balancing data efficiency with empirical
accuracy (Sferrazza & Dandrea, 2019). This layered transfer methodology aligns with findings
from vision-based robotics, where domain adaptation has similarly improved the sim-to-real
robustness of perceptual models (Calandra et al., 2018). However, unlike visual data, tactile
signals are influenced by non-idealities such as hysteresis, sensor drift, and contact
deformation, necessitating domain-specific adaptation pipelines. The reviewed literature

suggests that combining tactile with visual modalities during sim-to-real transfer yields
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superior performance, as multimodal cues compensate for modality-specific weaknesses
(Lambeta et al., 2020). These findings underscore that tactile sim-to-real transfer is not merely
a technical challenge but a conceptual bridge connecting sensor physics, data modeling, and

adaptive control.
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