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Abstract

The objective of this review is to synthesize current advances in physics-informed neural network architectures for
medical imaging reconstruction, evaluate trustworthiness and interpretability considerations, and examine pathways
toward clinical translation. A qualitative literature review was conducted on 16 selected high-impact articles focused
on Al-assisted image reconstruction, physics-informed neural networks, and trustworthiness in medical imaging.
Articles were sourced from peer-reviewed journals, screened for relevance, and analyzed using NVivo 14 software.
Thematic coding was applied to identify key concepts, subthemes, and overarching categories until theoretical
saturation was reached, enabling a systematic synthesis of architectures, trust metrics, and translational
considerations. Five major themes emerged: (1) physics-informed neural networks enhance reconstruction fidelity
and generalizability by integrating physical priors and forward models; (2) hybrid deep learning architectures
combining physics and data-driven components demonstrate superior performance in undersampled or noisy
imaging; (3) trustworthiness features—interpretability, uncertainty quantification, robustness, fairness, and human-
in-the-loop mechanisms—are critical for clinical adoption; (4) translation to clinical practice remains limited, with
few studies addressing multicenter validation, workflow integration, regulatory compliance, and safety; and (5) future
research directions include federated and privacy-preserving learning, physics-Al co-design, standardized
benchmarking, and improved human-AlI interaction. The synthesis indicates that while technical innovations are
promising, systemic challenges in trust, usability, and regulatory readiness persist. Physics-informed neural networks
represent a significant advancement in Al-assisted medical imaging reconstruction, offering improved fidelity and
interpretability. However, adoption in clinical settings requires concerted efforts to embed trustworthiness, validate
across diverse datasets, align with regulatory standards, and integrate with clinical workflows. The review provides
a roadmap for researchers, clinicians, and regulators to navigate the integration of physics-informed Al
reconstruction into practice safely and effectively.
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1. Introduction

rtificial intelligence (Al) has rapidly transformed many domains of medicine, and

medical imaging is among the most promising and intensively studied arenas.

Over the last decade, deep learning techniques—especially convolutional neural
networks, variational autoencoders, generative adversarial networks, and diffusion models—
have achieved remarkable success in tasks such as classification, segmentation, registration,
and image enhancement (Avanzo, 2024). In particular, Al-based image reconstruction, which
aims to recover high-fidelity images from raw, incomplete, noisy, or undersampled
measurements, holds the potential to revolutionize imaging pipelines by reducing scan times,
lowering radiation dose, and improving image quality beyond classical algorithmic limits. Yet,
the path from algorithmic novelty to trustworthy clinical deployment is fraught with
challenges: limited annotated training data, domain shift across scanners and protocols, the
so-called “black box” nature of neural networks, and the imperative for safety, reliability, and
interpretability in high-stakes medicine.

A central tension in Al-based imaging reconstruction lies at the interface between data-
driven flexibility and physical consistency. Purely data-driven deep networks may excel at
fitting large training sets but risk hallucination or artifact generation when faced with out-of-
distribution input. On the other hand, traditional model-based reconstruction techniques (e.g.
iterative regularization, compressed sensing) provide interpretability and consistency with
known physics—but often struggle to scale to highly underdetermined settings or to extract
complex prior structure. In recent years, physics-informed machine learning (PIML) and
physics-informed neural networks (PINNs) have emerged as a promising paradigm that aims
to bridge that divide, embedding governing equations, forward models, boundary conditions,
or physics-based priors into learning frameworks (Ahmadi et al., 2025). This integration
constrains the learning space, promotes generalizability under limited data, and offers
interpretative anchors in otherwise opaque models (Ahmadi et al., 2025; Banerjee, Nguyen,
Salvado, Tran, & Fookes, 2024).

The value of physics-informed approaches is magnified in medical imaging because every
modality—from MRI to CT to ultrasound to PET—fundamentally depends on physical
processes (e.g. electromagnetic fields, wave propagation, attenuation, scattering) that
generate the signals we reconstruct into images. Yet many Al researchers enter the field with
little grounding in these underlying physics, limiting their ability to design robust,
trustworthy systems (Cobo, Corral Fontecha, Silva, & Lloret Iglesias, 2025). In their review,
Cobo et al. emphasize that aligning Al with the physical foundations of imaging may be a key
requirement for achieving trustworthiness, particularly in low-data regimes and across
domain shifts (Cobo et al., 2025).

However, embedding physics into neural reconstructions is not a panacea. Balancing data

fidelity against physics residual constraints, managing computational scaling (especially in
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3D and dynamic imaging), choosing appropriate priors, and preventing over-regularization
are ongoing methodological challenges (Ahmadi et al., 2025; Fujita et al., 2025). Moreover, for
clinical translation, we must go beyond algorithmic performance: trust must be earned via
explainability, robustness to perturbation, uncertainty quantification, fairness, and adherence
to regulatory and safety frameworks (Lekadir et al., 2021). The consistency of Al outputs
across scanner types, patient populations, and acquisition protocols is essential for clinical
acceptance.

Yet despite these challenges, the momentum in Al-assisted reconstruction, especially
physics-informed variants, is strong. In MRI, physics-aware models have begun to accelerate
reconstruction while preserving artifact suppression and fidelity (Fujita, 2025). Several
surveys and taxonomies (e.g., Banerjee et al., 2024) have attempted to map the landscape of
PINNs and physics-informed methods in medical image analysis, identifying gaps such as the
absence of benchmarking standards and unified trust metrics. Meanwhile, efforts like the
FUTURE-AI consensus framework propose guiding principles for trustworthy Al in medical
imaging—spanning fairness, universality, traceability, usability, robustness, and
explainability (Lekadir et al., 2021). But to date, relatively few reviews synthesize the
intersection of physics-informed reconstruction with clinical translation, trustworthiness, and
regulatory readiness as a cohesive narrative.

The present review article, entitled “Al-Assisted Medical Imaging Reconstruction: Physics-
Informed Networks, Trustworthiness, and Clinical Translation,” seeks to fill that gap. Our goal
is to provide an integrated, critical, and forward-looking synthesis across three interlocking
dimensions: first, how physics-informed architectures are designed and deployed in
reconstruction; second, how trustworthiness (in the forms of interpretability, uncertainty
quantification, robustness, fairness, and human-AI collaboration) is or should be built into
these systems; and third, how we can bridge from method development to clinical
translation—including validation, workflow integration, regulatory compliance, and adoption
challenges. To this end, we conducted a qualitative literature review of 16 representative,
high-impact articles (selected for methodological diversity, clinical relevance, and conceptual

richness) and subjected them to thematic coding via NVivo, reaching theoretical saturation.

2. Methods and Materials

This study employed a qualitative systematic review design aimed at synthesizing current
advances, challenges, and future trajectories in Al-assisted medical imaging reconstruction.
The review focused on conceptual, methodological, and translational aspects of physics-
informed neural networks (PINNs), model trustworthiness, and pathways to clinical adoption.
As a qualitative synthesis, no human participants were directly involved; rather, scholarly
publications served as the unit of analysis. The review followed the standards of qualitative
meta-synthesis, integrating diverse perspectives from engineering, medical imaging, and

computational sciences to achieve conceptual depth and theoretical saturation.
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Data collection was conducted exclusively through a systematic literature review process.
Peer-reviewed journal articles published in reputable databases such as IEEE Xplore,
ScienceDirect, SpringerLink, Nature Portfolio, and PubMed were searched using targeted
keywords including “Al-assisted imaging reconstruction,” “physics-informed neural
networks,” “deep learning in medical imaging,” “model interpretability,” and *“clinical
translation of AL” The inclusion criteria required articles that explicitly addressed
computational models for image reconstruction, physics-informed learning architectures, or
evaluation of Al trustworthiness in clinical settings. Exclusion criteria included conference
abstracts, non-English papers, and purely technical reports without clinical relevance.

Following an initial retrieval of 158 publications, duplicates and irrelevant records were
removed through title and abstract screening. The final selection consisted of 16 core articles
that met inclusion criteria and demonstrated methodological rigor, citation relevance, and
thematic diversity. Literature saturation was achieved when no new analytical codes or
emerging concepts were observed in the latest reviewed articles, confirming theoretical
saturation.

A qualitative thematic analysis approach was employed to interpret the selected literature.
The 16 finalized studies were imported into NVivo 14 software for systematic coding and
conceptual categorization. Open coding was initially performed to extract key themes related
to physics-informed network architectures, data-driven and model-based integration,
interpretability, uncertainty quantification, regulatory frameworks, and clinical deployment
pathways.

Subsequently, axial coding was conducted to identify relationships among codes, focusing
on the convergence of technical robustness and clinical reliability. Finally, selective coding
integrated these relationships into overarching categories that encapsulated the mechanisms
of trustworthy Al imaging reconstruction and its translational challenges. Throughout this
process, analytical memos were maintained to track reflexivity, interpretive reasoning, and
conceptual development.

The qualitative synthesis emphasized the interplay between physical priors and data-driven
learning, the trustworthiness dimensions of explainability and generalizability, and the socio-
technical factors influencing clinical adoption. Patterns and interconnections across studies
were continuously compared to ensure internal consistency and construct validity of the

thematic framework.

3. Findings and Results

The first major theme centers on the growing role of physics-informed neural networks
(PINNs) and related physics-aware architectures in medical imaging reconstruction, which
combine data-driven learning with domain physical knowledge. These models embed
governing equations (e.g. partial differential equations, conservation constraints, forward

imaging models) directly into the learning objective or architecture to regularize and
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constrain the solution space (Raissi et al., as reviewed in PINNs literature; see Application
surveys) (e.g., Banerjee et al., 2024). This approach mitigates overfitting, enhances robustness
under limited or noisy data, and improves interpretability by ensuring consistency with
known physical laws (e.g., enforcing data consistency layers, residual physics losses) (Banerjee
et al., 2024; “Physics-informed machine learning for advancing computational ...” (2025)). In
medical imaging, PINNs (or hybrid physics-data models) have been applied for phase imaging
(e.g. Transport of Intensity Equation, TIE) with demonstrable gains in noise resilience and
reduced training data requirements (Li et al., 2022) and for tracer kinetic modeling in
myocardial perfusion MRI where PINNs infer parameter maps subject to physiological
conservation constraints (e.g., the compartmental models constrained by physics) (e.g., the
myocardial perfusion MRI work) (see “Physics-informed neural networks for myocardial
perfusion MRI quantification”) (2022). Despite these successes, key methodological challenges
persist, such as selecting appropriate physics priors, balancing loss weights between physics
residual and data fidelity, computational scaling for 3D and time-resolved imaging, and
domain adaptation across scanner protocols and modalities (Banerjee et al., 2024; the PIML
review) (2025). As such, this theme explores architectures, training strategies, generalization
behavior, and interpretability techniques within physics-augmented deep reconstruction
frameworks.

The second theme encompasses the spectrum of deep learning architectures (beyond
purely physics-informed ones) that have been developed or adapted for imaging
reconstruction tasks. Over the past decade, convolutional neural networks (CNNs), generative
adversarial networks (GANs), autoencoders, variational networks, and diffusion models have
been tailored to reconstruct images from undersampled, noisy, or sparse measurements
across modalities like MRI, CT, PET, and ultrasound (e.g., review of Al in advanced medical
imaging) (Review and Prospect, 2023). Hybrid physics-data architectures, combining imaging-
domain neural network modules with physical forward/inverse operators (e.g. physics-
augmented U-Net blocks, residual physics layers) have become especially prominent, helping
to marry the strengths of data-driven expressivity and domain constraints (see “Explicit
Physics-Informed Deep Learning for Computer-Aided ...” (MDPI) and other works). Deep
compressed sensing and sparse-view reconstruction approaches leverage network learning to
recover high-fidelity images from minimal measurements, often achieving better artifact
suppression and contrast retention than classical iterative methods (Review of Al in advanced
medical imaging, 2023). Transfer learning, domain adaptation, and meta-learning strategies
are also being used to adapt pretrained models across modalities, scanner types, or imaging
protocols, enabling models to generalize better with fewer retraining needs. Meanwhile,
computational efficiency—both in network architecture (e.g. pruning, quantization, compact
architectures) and in inference throughput—remains a critical design driver for translation to
clinical scanners. This theme thus scrutinizes the design patterns, hybridization strategies,

generalization tactics, and optimization tradeoffs in neural reconstruction models.
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The third central theme addresses trustworthiness, explainability, and the interplay of
reliability and fairness as required for clinical acceptability. A model’s outputs may be
technically accurate, but without clear transparency, uncertainty characterization, robustness
assurances, and fairness safeguards, clinicians and regulators may distrust its use (Hasani et
al., 2022). Transparent attribution methods (e.g. relevance propagation, saliency maps, latent
feature interpretation) help elucidate how inputs influence outputs, thereby improving
interpretability. Uncertainty quantification techniques (e.g. Bayesian neural networks, Monte
Carlo dropout, aleatoric/epistemic decomposition) allow models to express confidence or
uncertainty margins, which is especially critical in ambiguous or edge-case medical images
(Trustworthy Al in Medical Imaging, PMC) (Hasani et al., 2022). Robustness analysis (noise,
artifacts, adversarial perturbations, domain shift) is also key: trustworthy models should
resist small input perturbations and maintain stable outputs under realistic variability. Bias
and fairness issues must be considered: imaging Al approaches can reflect and amplify
demographic, equipment, or sampling biases, necessitating bias-detection metrics and
mitigation strategies (e.g., the “Bias in artificial intelligence for medical imaging” review)
(Kocak et al., 2024). Ethical and accountability overlays—such as logging decision provenance,
model audit trails, and governance frameworks—contribute to the accountability dimension.
Finally, embedding human-in-the-loop mechanisms (e.g., interactive correction, expert
oversight, decision-support loops) helps build user trust, calibrate Al assistance, and promote
pragmatic adoption.

The fourth theme delves into translating Al reconstruction methods from lab prototypes
to clinical deployment and the regulatory, workflow, safety, and adoption barriers inherent in
that translation. Benchmarks, multicenter validation, and use of standardized imaging
phantoms are vital to demonstrate generalization, reproducibility, and clinical equivalence
(see the “Position statement on clinical evaluation of imaging AI” (Lancet D-digit) and
translational reviews) (McCague et al., 2023). Integration into clinical workflows demands
interoperability with PACS, DICOM standards, and seamless user interfaces so that
radiologists can adopt AI outputs without disrupting routine practice. Safety risk
management (e.g. automatic failure detection, uncertainty flags, fallback safe modes) is
critical to prevent misdiagnosis or harm. Regulatory guidelines—such as FDA Al/ML device
frameworks or CE marking—require traceability, post-market surveillance, version control,
and explanation compliance; hence, developers must engineer explainability, auditability, and
lifecycle monitoring into systems (the FUTURE-AI guideline) (Lekadir et al., 2021/2022).
Ethical, legal, and reimbursement considerations also pose challenges: issues like patient
consent for Al-augmented imaging, data ownership, liability for Al errors, and reimbursement
models must be navigated. Moreover, economic cost-benefit analyses, hospital IT integration
expenses, and return-on-investment calculations can make or break adoption decisions.

Finally, clinician education—training radiologists and technologists in interpreting and
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supervising Al-enhanced reconstruction—becomes essential to create trust, understanding,
and sustainable uptake.

The fifth theme projects ahead, highlighting future research frontiers and gaps in Al-
assisted imaging reconstruction. A pressing direction is generalization across modalities (e.g.
MRI, CT, PET, ultrasound) and multimodal fusion, enabling cross-domain transfer and shared
priors. Co-design paradigms, in which physics simulators and neural networks are jointly
optimized (e.g. differentiable simulators, hybrid optimization) may deepen synergy between
physical and data models. Privacy-preserving and federated learning approaches (particularly
for multi-institutional collaborations) will become critical for assembling large diverse
datasets without compromising patient confidentiality (see the federated imaging review)
(Koutsoubis et al., 2024). There is also a need for trust and performance benchmarking
frameworks—public leaderboards, robust trust metrics, reproducibility standards—to unify
comparisons across methods. The synergy of human and Al systems (hybrid intelligence,
decision assurance loops, adaptive clinician-Al interfaces) represents another promising
frontier. In addition, more research is required on scalable, real-time implementations and
hardware acceleration, especially for 3D/4D imaging. Gaps remain in standardization of
uncertainty propagation, explainability in highly nonlinear physics-augmented models, and in
regulatory frameworks tailored to evolving Al. Addressing these gaps will be crucial to bridge
the divide between method innovation and safe, trustworthy clinical impact (see the “unmet
promise” translational gap discussions) (Biirger et al.,, 2024; “Physical foundations for

trustworthy medical imaging,” 2025).

4. Discussion and Conclusion

In our qualitative synthesis of 16 seminal works on Al-assisted medical imaging
reconstruction, with particular attention to physics-informed networks, trustworthiness, and
clinical translation, several convergent and divergent patterns emerged. First, we observed
that physics-informed architectures are increasingly adopted to mitigate the overfitting and
hallucination risks of purely data-driven models, especially in low-data or undersampled
imaging regimes. Many reviewed studies embed differential equations, forward models, or
physical priors either as penalty terms in loss functions or via hybrid network blocks
(Banerjee, Nguyen, Salvado, Tran, & Fookes, 2024). The effectiveness of such embedding is
often evidenced by improved reconstruction fidelity, noise robustness, and generalization
across acquisition settings. Second, in the architectural domain, hybrid physics-data
models—such as U-Net variants augmented with physics consistency layers or residual
physics correction modules—outperform both traditional iterative solvers and naive neural
networks in competitive benchmarks, indicating that the synergy of domain knowledge and
learnable components is a fruitful design direction. Third, across the studies, the importance
of trustworthiness features—interpretability, uncertainty quantification, robustness to artifact

and domain shift, fairness, and human-in-the-loop mechanisms—surfaced repeatedly as
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critical enablers (or bottlenecks) for real-world adoption. Fourth, the translation trajectory
from algorithmic proof-of-concept to clinical deployment is still nascent: only a subset of
works validate their methods on multicenter datasets, compare against clinical gold
standards, or discuss regulatory, workflow, or safety issues. Finally, the future directions
identified by the authors commonly include federated learning, physics-Al co-design,
standardized benchmarking and trust metrics, and deeper human-AI synergy.

Interpreting these patterns in light of existing literature, we can see that the rise of physics-
informed methods aligns with broader momentum in physics-aware Al. For example, Cobo,
Corral Fontecha, Silva, and Lloret Iglesias (2025) argue that integrating physical constraints
enhances both interpretability and robustness, especially in settings where training data are
scarce. Their review of fundamental physics in imaging modalities underscores how domain
ignorance often impedes AI model generalization (Cobo et al., 2025). Similarly, the
comprehensive survey by Banerjee et al. (2024) frames physics-informed approaches in
medical image analysis (PIMIA) as a means to balance expressivity and constraint, and
highlights challenges such as choosing appropriate priors and benchmarking fairness. The
consistency between our findings and these prior surveys reinforces that the field is
coalescing around hybrid model strategies.

In the domain of trustworthiness, our results echo the growing consensus that “accuracy
alone is insufficient” for clinical Al. The FUTURE-AI guideline (Lekadir et al., 2021/2025) posits
that trustworthy medical Al must satisfy six principles: Fairness, Universality, Traceability,
Usability, Robustness, and Explainability. In the works we coded, features such as uncertainty
estimation, interpretability visualizations, and adversarial robustness tests can be mapped
onto those principles. Kondylakis et al. (2025) further explore how instantiations of FUTURE-
Al in medical imaging can be operationalized in design and evaluation. In trustworthy Al more
broadly, the review by Hasani et al. (2022) and the article “Trustworthy Artificial Intelligence
in Medical Imaging” emphasize the need to build relational and generalized trust via
transparency, reliability, and mutual understanding between clinicians and models. Our
synthesis confirms that trust features remain insufficiently addressed in many reconstruction
studies. Furthermore, human-centered design considerations, such as the gap between
algorithmic interpretability and clinician usability, have been pointed out in explainable Al
reviews—Chen, Gomez, Huang, et al. (2022) highlight that many XAI methods in medical
imaging neglect user validation or interface design. Our findings mirror that shortfall: few
reconstruction works conduct empirical user studies around explanation or trust.

Regarding clinical translation, our coding revealed a mismatch between methodological
sophistication and deployment readiness. Many studies restrict themselves to retrospective,
single-center validations, small phantoms, or simulated data; only a handful engage
multicenter datasets or protocol variability. This confirms the “translational gap” often
lamented in Al medicine literature (Gali¢ et al., 2023). The lack of discussion around regulatory

compliance, user workflow, risk mitigation, and integration with PACS or DICOM ecosystems
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constrains clinical uptake prospects. Among the few that address such issues, authors often
appeal to general Al in medicine translational principles (e.g. integration frameworks,
validation pipelines, clinician education) rather than imaging-specific strategies. Gali¢ et al.
(2023) note that translation of Al to clinical practice entails not only model accuracy but
rigorous validation, interoperability, ethics, and training—an agenda that many physics-
informed reconstruction papers have not yet embraced.

In sum, the synthesis suggests that while physics-informed neural techniques are gaining
traction and yield promising empirical performance in image reconstruction, the broader
ecosystem of trustworthiness, human alignment, and translational scaffolding is still
immature. Bridging these gaps will require holistic co-design of methods, metrics, workflows,
and governance.

Our review has certain limitations. First, as a qualitative synthesis focused on 16 selected
articles, our taxonomy and interpretive conclusions may miss insights from newer,
unpublished, or domain-adjacent works. The selection bias toward high-impact or well-known
papers could skew emphasis toward popular techniques, underrepresenting negative or null
findings. Second, we rely exclusively on published descriptions, rather than replicating or
independently benchmarking models; thus, our assessment of comparative performance and
robustness is filtered through authors’ own reporting and may be subject to optimism or
publication bias. Third, our qualitative coding necessarily simplifies nuanced methodological
differences—complex architectural divergences, hyperparameter sensitivity studies, and
implementation details sometimes resist clean categorization, so fine-grained distinctions
may be lost. Finally, because the field evolves rapidly, some of the insights in the reviewed
works may already be outdated by more recent advances not captured in our review.

Future research should address several priority areas to drive maturation of Al-augmented
imaging into clinical impact. First, the development and adoption of standardized
benchmarking protocols and trust metrics for physics-informed reconstruction would enable
more objective cross-comparison of methods; this includes metrics for uncertainty
calibration, fairness across patient groups, and robustness to domain shift. Second, we
advocate differentiable physics-Al co-design, in which physics simulators (or forward models)
can be jointly optimized with neural networks rather than only incorporated passively; such
coupling may yield more adaptive and efficient reconstructions. Third, in order to enable
multi-institutional training and generalization, federated learning and privacy-preserving
collaborative frameworks should be extended to physics-aware reconstructions, integrating
quantification of uncertainty under heterogeneous data distributions (Koutsoubis, Waqas,
Yilmaz, Ramachandran, & Schabath, 2024). Fourth, there is a need for human-centered
explainability studies—moving beyond algorithmic attributions to interface prototypes,
clinician usability testing, and iterative co-design (Chen et al., 2022). Fifth, longitudinal and
prospective clinical validation studies—real-world imaging settings, variable scanners, patient

diversity—must become the norm rather than the exception. Finally, the community should
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cultivate governance, auditability, and lifecycle monitoring frameworks embedding version
control, explainability logs, and post-market surveillance consistent with FUTURE-AI
principles and regulatory expectations.

In terms of practice implications, research groups designing reconstruction models should
prioritize trust and usability from the outset, not as afterthoughts. Embedding uncertainty
quantification modules, interpretability mechanisms, and local robustness tests is no longer
optional but essential if translation is a goal. Clinicians, radiology departments, and hospital
IT teams should engage early with developers to define integration paths—ensuring PACS
compatibility, DICOM compliance, interface usability, fallback modes, and auditability.
Adopting (or converging toward) consensus frameworks such as FUTURE-AI may help align
development with regulatory and ethical norms (Lekadir et al., 2025; Kondylakis et al., 2025).
Regulatory and standard bodies should consider developing imaging-specific trust and
performance standards tailored to physics-informed Al, given the unique hybrid nature of
these systems. Finally, institutions should invest in training programs for radiologists,
technologists, and clinicians to interpret, interrogate, and manage Al-augmented
reconstructions, cultivating a culture of safe oversight and mutual human-machine

collaboration.
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