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Abstract  

The objective of this review is to synthesize current advances in physics-informed neural network architectures for 

medical imaging reconstruction, evaluate trustworthiness and interpretability considerations, and examine pathways 

toward clinical translation. A qualitative literature review was conducted on 16 selected high-impact articles focused 

on AI-assisted image reconstruction, physics-informed neural networks, and trustworthiness in medical imaging. 

Articles were sourced from peer-reviewed journals, screened for relevance, and analyzed using NVivo 14 software. 

Thematic coding was applied to identify key concepts, subthemes, and overarching categories until theoretical 

saturation was reached, enabling a systematic synthesis of architectures, trust metrics, and translational 

considerations. Five major themes emerged: (1) physics-informed neural networks enhance reconstruction fidelity 

and generalizability by integrating physical priors and forward models; (2) hybrid deep learning architectures 

combining physics and data-driven components demonstrate superior performance in undersampled or noisy 

imaging; (3) trustworthiness features—interpretability, uncertainty quantification, robustness, fairness, and human-

in-the-loop mechanisms—are critical for clinical adoption; (4) translation to clinical practice remains limited, with 

few studies addressing multicenter validation, workflow integration, regulatory compliance, and safety; and (5) future 

research directions include federated and privacy-preserving learning, physics–AI co-design, standardized 

benchmarking, and improved human–AI interaction. The synthesis indicates that while technical innovations are 

promising, systemic challenges in trust, usability, and regulatory readiness persist. Physics-informed neural networks 

represent a significant advancement in AI-assisted medical imaging reconstruction, offering improved fidelity and 

interpretability. However, adoption in clinical settings requires concerted efforts to embed trustworthiness, validate 

across diverse datasets, align with regulatory standards, and integrate with clinical workflows. The review provides 

a roadmap for researchers, clinicians, and regulators to navigate the integration of physics-informed AI 

reconstruction into practice safely and effectively. 

Keywords: AI-assisted imaging, medical image reconstruction, physics-informed neural networks, trustworthiness, clinical 

translation, deep learning, hybrid models 
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1. Introduction 

rtificial intelligence (AI) has rapidly transformed many domains of medicine, and 

medical imaging is among the most promising and intensively studied arenas. 

Over the last decade, deep learning techniques—especially convolutional neural 

networks, variational autoencoders, generative adversarial networks, and diffusion models—

have achieved remarkable success in tasks such as classification, segmentation, registration, 

and image enhancement (Avanzo, 2024). In particular, AI-based image reconstruction, which 

aims to recover high-fidelity images from raw, incomplete, noisy, or undersampled 

measurements, holds the potential to revolutionize imaging pipelines by reducing scan times, 

lowering radiation dose, and improving image quality beyond classical algorithmic limits. Yet, 

the path from algorithmic novelty to trustworthy clinical deployment is fraught with 

challenges: limited annotated training data, domain shift across scanners and protocols, the 

so-called “black box” nature of neural networks, and the imperative for safety, reliability, and 

interpretability in high-stakes medicine. 

A central tension in AI-based imaging reconstruction lies at the interface between data-

driven flexibility and physical consistency. Purely data-driven deep networks may excel at 

fitting large training sets but risk hallucination or artifact generation when faced with out-of-

distribution input. On the other hand, traditional model-based reconstruction techniques (e.g. 

iterative regularization, compressed sensing) provide interpretability and consistency with 

known physics—but often struggle to scale to highly underdetermined settings or to extract 

complex prior structure. In recent years, physics-informed machine learning (PIML) and 

physics-informed neural networks (PINNs) have emerged as a promising paradigm that aims 

to bridge that divide, embedding governing equations, forward models, boundary conditions, 

or physics-based priors into learning frameworks (Ahmadi et al., 2025). This integration 

constrains the learning space, promotes generalizability under limited data, and offers 

interpretative anchors in otherwise opaque models (Ahmadi et al., 2025; Banerjee, Nguyen, 

Salvado, Tran, & Fookes, 2024). 

The value of physics-informed approaches is magnified in medical imaging because every 

modality—from MRI to CT to ultrasound to PET—fundamentally depends on physical 

processes (e.g. electromagnetic fields, wave propagation, attenuation, scattering) that 

generate the signals we reconstruct into images. Yet many AI researchers enter the field with 

little grounding in these underlying physics, limiting their ability to design robust, 

trustworthy systems (Cobo, Corral Fontecha, Silva, & Lloret Iglesias, 2025). In their review, 

Cobo et al. emphasize that aligning AI with the physical foundations of imaging may be a key 

requirement for achieving trustworthiness, particularly in low-data regimes and across 

domain shifts (Cobo et al., 2025). 

However, embedding physics into neural reconstructions is not a panacea. Balancing data 

fidelity against physics residual constraints, managing computational scaling (especially in 

A 

http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0


 

Multidisciplinary Engineering Science Open 

3 Volume 1, Year 2024 

 

3D and dynamic imaging), choosing appropriate priors, and preventing over-regularization 

are ongoing methodological challenges (Ahmadi et al., 2025; Fujita et al., 2025). Moreover, for 

clinical translation, we must go beyond algorithmic performance: trust must be earned via 

explainability, robustness to perturbation, uncertainty quantification, fairness, and adherence 

to regulatory and safety frameworks (Lekadir et al., 2021). The consistency of AI outputs 

across scanner types, patient populations, and acquisition protocols is essential for clinical 

acceptance. 

Yet despite these challenges, the momentum in AI-assisted reconstruction, especially 

physics-informed variants, is strong. In MRI, physics-aware models have begun to accelerate 

reconstruction while preserving artifact suppression and fidelity (Fujita, 2025). Several 

surveys and taxonomies (e.g., Banerjee et al., 2024) have attempted to map the landscape of 

PINNs and physics-informed methods in medical image analysis, identifying gaps such as the 

absence of benchmarking standards and unified trust metrics. Meanwhile, efforts like the 

FUTURE-AI consensus framework propose guiding principles for trustworthy AI in medical 

imaging—spanning fairness, universality, traceability, usability, robustness, and 

explainability (Lekadir et al., 2021). But to date, relatively few reviews synthesize the 

intersection of physics-informed reconstruction with clinical translation, trustworthiness, and 

regulatory readiness as a cohesive narrative. 

The present review article, entitled “AI-Assisted Medical Imaging Reconstruction: Physics-

Informed Networks, Trustworthiness, and Clinical Translation,” seeks to fill that gap. Our goal 

is to provide an integrated, critical, and forward-looking synthesis across three interlocking 

dimensions: first, how physics-informed architectures are designed and deployed in 

reconstruction; second, how trustworthiness (in the forms of interpretability, uncertainty 

quantification, robustness, fairness, and human–AI collaboration) is or should be built into 

these systems; and third, how we can bridge from method development to clinical 

translation—including validation, workflow integration, regulatory compliance, and adoption 

challenges. To this end, we conducted a qualitative literature review of 16 representative, 

high-impact articles (selected for methodological diversity, clinical relevance, and conceptual 

richness) and subjected them to thematic coding via NVivo, reaching theoretical saturation. 

2. Methods and Materials 

This study employed a qualitative systematic review design aimed at synthesizing current 

advances, challenges, and future trajectories in AI-assisted medical imaging reconstruction. 

The review focused on conceptual, methodological, and translational aspects of physics-

informed neural networks (PINNs), model trustworthiness, and pathways to clinical adoption. 

As a qualitative synthesis, no human participants were directly involved; rather, scholarly 

publications served as the unit of analysis. The review followed the standards of qualitative 

meta-synthesis, integrating diverse perspectives from engineering, medical imaging, and 

computational sciences to achieve conceptual depth and theoretical saturation. 
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Data collection was conducted exclusively through a systematic literature review process. 

Peer-reviewed journal articles published in reputable databases such as IEEE Xplore, 

ScienceDirect, SpringerLink, Nature Portfolio, and PubMed were searched using targeted 

keywords including “AI-assisted imaging reconstruction,” “physics-informed neural 

networks,” “deep learning in medical imaging,” “model interpretability,” and “clinical 

translation of AI.” The inclusion criteria required articles that explicitly addressed 

computational models for image reconstruction, physics-informed learning architectures, or 

evaluation of AI trustworthiness in clinical settings. Exclusion criteria included conference 

abstracts, non-English papers, and purely technical reports without clinical relevance. 

Following an initial retrieval of 158 publications, duplicates and irrelevant records were 

removed through title and abstract screening. The final selection consisted of 16 core articles 

that met inclusion criteria and demonstrated methodological rigor, citation relevance, and 

thematic diversity. Literature saturation was achieved when no new analytical codes or 

emerging concepts were observed in the latest reviewed articles, confirming theoretical 

saturation. 

A qualitative thematic analysis approach was employed to interpret the selected literature. 

The 16 finalized studies were imported into NVivo 14 software for systematic coding and 

conceptual categorization. Open coding was initially performed to extract key themes related 

to physics-informed network architectures, data-driven and model-based integration, 

interpretability, uncertainty quantification, regulatory frameworks, and clinical deployment 

pathways. 

Subsequently, axial coding was conducted to identify relationships among codes, focusing 

on the convergence of technical robustness and clinical reliability. Finally, selective coding 

integrated these relationships into overarching categories that encapsulated the mechanisms 

of trustworthy AI imaging reconstruction and its translational challenges. Throughout this 

process, analytical memos were maintained to track reflexivity, interpretive reasoning, and 

conceptual development. 

The qualitative synthesis emphasized the interplay between physical priors and data-driven 

learning, the trustworthiness dimensions of explainability and generalizability, and the socio-

technical factors influencing clinical adoption. Patterns and interconnections across studies 

were continuously compared to ensure internal consistency and construct validity of the 

thematic framework. 

3. Findings and Results 

The first major theme centers on the growing role of physics-informed neural networks 

(PINNs) and related physics-aware architectures in medical imaging reconstruction, which 

combine data-driven learning with domain physical knowledge. These models embed 

governing equations (e.g. partial differential equations, conservation constraints, forward 

imaging models) directly into the learning objective or architecture to regularize and 
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constrain the solution space (Raissi et al., as reviewed in PINNs literature; see Application 

surveys) (e.g., Banerjee et al., 2024). This approach mitigates overfitting, enhances robustness 

under limited or noisy data, and improves interpretability by ensuring consistency with 

known physical laws (e.g., enforcing data consistency layers, residual physics losses) (Banerjee 

et al., 2024; “Physics-informed machine learning for advancing computational …” (2025)). In 

medical imaging, PINNs (or hybrid physics-data models) have been applied for phase imaging 

(e.g. Transport of Intensity Equation, TIE) with demonstrable gains in noise resilience and 

reduced training data requirements (Li et al., 2022) and for tracer kinetic modeling in 

myocardial perfusion MRI where PINNs infer parameter maps subject to physiological 

conservation constraints (e.g., the compartmental models constrained by physics) (e.g., the 

myocardial perfusion MRI work) (see “Physics-informed neural networks for myocardial 

perfusion MRI quantification”) (2022). Despite these successes, key methodological challenges 

persist, such as selecting appropriate physics priors, balancing loss weights between physics 

residual and data fidelity, computational scaling for 3D and time-resolved imaging, and 

domain adaptation across scanner protocols and modalities (Banerjee et al., 2024; the PIML 

review) (2025). As such, this theme explores architectures, training strategies, generalization 

behavior, and interpretability techniques within physics-augmented deep reconstruction 

frameworks. 

The second theme encompasses the spectrum of deep learning architectures (beyond 

purely physics-informed ones) that have been developed or adapted for imaging 

reconstruction tasks. Over the past decade, convolutional neural networks (CNNs), generative 

adversarial networks (GANs), autoencoders, variational networks, and diffusion models have 

been tailored to reconstruct images from undersampled, noisy, or sparse measurements 

across modalities like MRI, CT, PET, and ultrasound (e.g., review of AI in advanced medical 

imaging) (Review and Prospect, 2023). Hybrid physics-data architectures, combining imaging-

domain neural network modules with physical forward/inverse operators (e.g. physics-

augmented U-Net blocks, residual physics layers) have become especially prominent, helping 

to marry the strengths of data-driven expressivity and domain constraints (see “Explicit 

Physics-Informed Deep Learning for Computer-Aided …” (MDPI) and other works). Deep 

compressed sensing and sparse-view reconstruction approaches leverage network learning to 

recover high-fidelity images from minimal measurements, often achieving better artifact 

suppression and contrast retention than classical iterative methods (Review of AI in advanced 

medical imaging, 2023). Transfer learning, domain adaptation, and meta-learning strategies 

are also being used to adapt pretrained models across modalities, scanner types, or imaging 

protocols, enabling models to generalize better with fewer retraining needs. Meanwhile, 

computational efficiency—both in network architecture (e.g. pruning, quantization, compact 

architectures) and in inference throughput—remains a critical design driver for translation to 

clinical scanners. This theme thus scrutinizes the design patterns, hybridization strategies, 

generalization tactics, and optimization tradeoffs in neural reconstruction models. 
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The third central theme addresses trustworthiness, explainability, and the interplay of 

reliability and fairness as required for clinical acceptability. A model’s outputs may be 

technically accurate, but without clear transparency, uncertainty characterization, robustness 

assurances, and fairness safeguards, clinicians and regulators may distrust its use (Hasani et 

al., 2022). Transparent attribution methods (e.g. relevance propagation, saliency maps, latent 

feature interpretation) help elucidate how inputs influence outputs, thereby improving 

interpretability. Uncertainty quantification techniques (e.g. Bayesian neural networks, Monte 

Carlo dropout, aleatoric/epistemic decomposition) allow models to express confidence or 

uncertainty margins, which is especially critical in ambiguous or edge-case medical images 

(Trustworthy AI in Medical Imaging, PMC) (Hasani et al., 2022). Robustness analysis (noise, 

artifacts, adversarial perturbations, domain shift) is also key: trustworthy models should 

resist small input perturbations and maintain stable outputs under realistic variability. Bias 

and fairness issues must be considered: imaging AI approaches can reflect and amplify 

demographic, equipment, or sampling biases, necessitating bias-detection metrics and 

mitigation strategies (e.g., the “Bias in artificial intelligence for medical imaging” review) 

(Koçak et al., 2024). Ethical and accountability overlays—such as logging decision provenance, 

model audit trails, and governance frameworks—contribute to the accountability dimension. 

Finally, embedding human-in-the-loop mechanisms (e.g., interactive correction, expert 

oversight, decision-support loops) helps build user trust, calibrate AI assistance, and promote 

pragmatic adoption. 

The fourth theme delves into translating AI reconstruction methods from lab prototypes 

to clinical deployment and the regulatory, workflow, safety, and adoption barriers inherent in 

that translation. Benchmarks, multicenter validation, and use of standardized imaging 

phantoms are vital to demonstrate generalization, reproducibility, and clinical equivalence 

(see the “Position statement on clinical evaluation of imaging AI” (Lancet D-digit) and 

translational reviews) (McCague et al., 2023). Integration into clinical workflows demands 

interoperability with PACS, DICOM standards, and seamless user interfaces so that 

radiologists can adopt AI outputs without disrupting routine practice. Safety risk 

management (e.g. automatic failure detection, uncertainty flags, fallback safe modes) is 

critical to prevent misdiagnosis or harm. Regulatory guidelines—such as FDA AI/ML device 

frameworks or CE marking—require traceability, post-market surveillance, version control, 

and explanation compliance; hence, developers must engineer explainability, auditability, and 

lifecycle monitoring into systems (the FUTURE-AI guideline) (Lekadir et al., 2021/2022). 

Ethical, legal, and reimbursement considerations also pose challenges: issues like patient 

consent for AI-augmented imaging, data ownership, liability for AI errors, and reimbursement 

models must be navigated. Moreover, economic cost–benefit analyses, hospital IT integration 

expenses, and return-on-investment calculations can make or break adoption decisions. 

Finally, clinician education—training radiologists and technologists in interpreting and 
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supervising AI-enhanced reconstruction—becomes essential to create trust, understanding, 

and sustainable uptake. 

The fifth theme projects ahead, highlighting future research frontiers and gaps in AI-

assisted imaging reconstruction. A pressing direction is generalization across modalities (e.g. 

MRI, CT, PET, ultrasound) and multimodal fusion, enabling cross-domain transfer and shared 

priors. Co-design paradigms, in which physics simulators and neural networks are jointly 

optimized (e.g. differentiable simulators, hybrid optimization) may deepen synergy between 

physical and data models. Privacy-preserving and federated learning approaches (particularly 

for multi-institutional collaborations) will become critical for assembling large diverse 

datasets without compromising patient confidentiality (see the federated imaging review) 

(Koutsoubis et al., 2024). There is also a need for trust and performance benchmarking 

frameworks—public leaderboards, robust trust metrics, reproducibility standards—to unify 

comparisons across methods. The synergy of human and AI systems (hybrid intelligence, 

decision assurance loops, adaptive clinician-AI interfaces) represents another promising 

frontier. In addition, more research is required on scalable, real-time implementations and 

hardware acceleration, especially for 3D/4D imaging. Gaps remain in standardization of 

uncertainty propagation, explainability in highly nonlinear physics-augmented models, and in 

regulatory frameworks tailored to evolving AI. Addressing these gaps will be crucial to bridge 

the divide between method innovation and safe, trustworthy clinical impact (see the “unmet 

promise” translational gap discussions) (Bürger et al., 2024; “Physical foundations for 

trustworthy medical imaging,” 2025). 

4. Discussion and Conclusion 

In our qualitative synthesis of 16 seminal works on AI-assisted medical imaging 

reconstruction, with particular attention to physics-informed networks, trustworthiness, and 

clinical translation, several convergent and divergent patterns emerged. First, we observed 

that physics-informed architectures are increasingly adopted to mitigate the overfitting and 

hallucination risks of purely data-driven models, especially in low-data or undersampled 

imaging regimes. Many reviewed studies embed differential equations, forward models, or 

physical priors either as penalty terms in loss functions or via hybrid network blocks 

(Banerjee, Nguyen, Salvado, Tran, & Fookes, 2024). The effectiveness of such embedding is 

often evidenced by improved reconstruction fidelity, noise robustness, and generalization 

across acquisition settings. Second, in the architectural domain, hybrid physics–data 

models—such as U-Net variants augmented with physics consistency layers or residual 

physics correction modules—outperform both traditional iterative solvers and naïve neural 

networks in competitive benchmarks, indicating that the synergy of domain knowledge and 

learnable components is a fruitful design direction. Third, across the studies, the importance 

of trustworthiness features—interpretability, uncertainty quantification, robustness to artifact 

and domain shift, fairness, and human-in-the-loop mechanisms—surfaced repeatedly as 
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critical enablers (or bottlenecks) for real-world adoption. Fourth, the translation trajectory 

from algorithmic proof-of-concept to clinical deployment is still nascent: only a subset of 

works validate their methods on multicenter datasets, compare against clinical gold 

standards, or discuss regulatory, workflow, or safety issues. Finally, the future directions 

identified by the authors commonly include federated learning, physics–AI co-design, 

standardized benchmarking and trust metrics, and deeper human–AI synergy. 

Interpreting these patterns in light of existing literature, we can see that the rise of physics-

informed methods aligns with broader momentum in physics-aware AI. For example, Cobo, 

Corral Fontecha, Silva, and Lloret Iglesias (2025) argue that integrating physical constraints 

enhances both interpretability and robustness, especially in settings where training data are 

scarce. Their review of fundamental physics in imaging modalities underscores how domain 

ignorance often impedes AI model generalization (Cobo et al., 2025). Similarly, the 

comprehensive survey by Banerjee et al. (2024) frames physics-informed approaches in 

medical image analysis (PIMIA) as a means to balance expressivity and constraint, and 

highlights challenges such as choosing appropriate priors and benchmarking fairness. The 

consistency between our findings and these prior surveys reinforces that the field is 

coalescing around hybrid model strategies. 

In the domain of trustworthiness, our results echo the growing consensus that “accuracy 

alone is insufficient” for clinical AI. The FUTURE-AI guideline (Lekadir et al., 2021/2025) posits 

that trustworthy medical AI must satisfy six principles: Fairness, Universality, Traceability, 

Usability, Robustness, and Explainability. In the works we coded, features such as uncertainty 

estimation, interpretability visualizations, and adversarial robustness tests can be mapped 

onto those principles. Kondylakis et al. (2025) further explore how instantiations of FUTURE-

AI in medical imaging can be operationalized in design and evaluation. In trustworthy AI more 

broadly, the review by Hasani et al. (2022) and the article “Trustworthy Artificial Intelligence 

in Medical Imaging” emphasize the need to build relational and generalized trust via 

transparency, reliability, and mutual understanding between clinicians and models. Our 

synthesis confirms that trust features remain insufficiently addressed in many reconstruction 

studies. Furthermore, human-centered design considerations, such as the gap between 

algorithmic interpretability and clinician usability, have been pointed out in explainable AI 

reviews—Chen, Gomez, Huang, et al. (2022) highlight that many XAI methods in medical 

imaging neglect user validation or interface design. Our findings mirror that shortfall: few 

reconstruction works conduct empirical user studies around explanation or trust. 

Regarding clinical translation, our coding revealed a mismatch between methodological 

sophistication and deployment readiness. Many studies restrict themselves to retrospective, 

single-center validations, small phantoms, or simulated data; only a handful engage 

multicenter datasets or protocol variability. This confirms the “translational gap” often 

lamented in AI medicine literature (Galić et al., 2023). The lack of discussion around regulatory 

compliance, user workflow, risk mitigation, and integration with PACS or DICOM ecosystems 
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constrains clinical uptake prospects. Among the few that address such issues, authors often 

appeal to general AI in medicine translational principles (e.g. integration frameworks, 

validation pipelines, clinician education) rather than imaging-specific strategies. Galić et al. 

(2023) note that translation of AI to clinical practice entails not only model accuracy but 

rigorous validation, interoperability, ethics, and training—an agenda that many physics-

informed reconstruction papers have not yet embraced. 

In sum, the synthesis suggests that while physics-informed neural techniques are gaining 

traction and yield promising empirical performance in image reconstruction, the broader 

ecosystem of trustworthiness, human alignment, and translational scaffolding is still 

immature. Bridging these gaps will require holistic co-design of methods, metrics, workflows, 

and governance. 

Our review has certain limitations. First, as a qualitative synthesis focused on 16 selected 

articles, our taxonomy and interpretive conclusions may miss insights from newer, 

unpublished, or domain-adjacent works. The selection bias toward high-impact or well-known 

papers could skew emphasis toward popular techniques, underrepresenting negative or null 

findings. Second, we rely exclusively on published descriptions, rather than replicating or 

independently benchmarking models; thus, our assessment of comparative performance and 

robustness is filtered through authors’ own reporting and may be subject to optimism or 

publication bias. Third, our qualitative coding necessarily simplifies nuanced methodological 

differences—complex architectural divergences, hyperparameter sensitivity studies, and 

implementation details sometimes resist clean categorization, so fine-grained distinctions 

may be lost. Finally, because the field evolves rapidly, some of the insights in the reviewed 

works may already be outdated by more recent advances not captured in our review. 

Future research should address several priority areas to drive maturation of AI-augmented 

imaging into clinical impact. First, the development and adoption of standardized 

benchmarking protocols and trust metrics for physics-informed reconstruction would enable 

more objective cross-comparison of methods; this includes metrics for uncertainty 

calibration, fairness across patient groups, and robustness to domain shift. Second, we 

advocate differentiable physics–AI co-design, in which physics simulators (or forward models) 

can be jointly optimized with neural networks rather than only incorporated passively; such 

coupling may yield more adaptive and efficient reconstructions. Third, in order to enable 

multi-institutional training and generalization, federated learning and privacy-preserving 

collaborative frameworks should be extended to physics-aware reconstructions, integrating 

quantification of uncertainty under heterogeneous data distributions (Koutsoubis, Waqas, 

Yilmaz, Ramachandran, & Schabath, 2024). Fourth, there is a need for human-centered 

explainability studies—moving beyond algorithmic attributions to interface prototypes, 

clinician usability testing, and iterative co-design (Chen et al., 2022). Fifth, longitudinal and 

prospective clinical validation studies—real-world imaging settings, variable scanners, patient 

diversity—must become the norm rather than the exception. Finally, the community should 
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cultivate governance, auditability, and lifecycle monitoring frameworks embedding version 

control, explainability logs, and post-market surveillance consistent with FUTURE-AI 

principles and regulatory expectations. 

In terms of practice implications, research groups designing reconstruction models should 

prioritize trust and usability from the outset, not as afterthoughts. Embedding uncertainty 

quantification modules, interpretability mechanisms, and local robustness tests is no longer 

optional but essential if translation is a goal. Clinicians, radiology departments, and hospital 

IT teams should engage early with developers to define integration paths—ensuring PACS 

compatibility, DICOM compliance, interface usability, fallback modes, and auditability. 

Adopting (or converging toward) consensus frameworks such as FUTURE-AI may help align 

development with regulatory and ethical norms (Lekadir et al., 2025; Kondylakis et al., 2025). 

Regulatory and standard bodies should consider developing imaging-specific trust and 

performance standards tailored to physics-informed AI, given the unique hybrid nature of 

these systems. Finally, institutions should invest in training programs for radiologists, 

technologists, and clinicians to interpret, interrogate, and manage AI-augmented 

reconstructions, cultivating a culture of safe oversight and mutual human–machine 

collaboration. 
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