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Abstract  

This study aimed to synthesize and critically evaluate the role of differentiable physics frameworks in advancing 

multidisciplinary design optimization (MDO), focusing on implicit gradient computation, adjoint-based sensitivity 

analysis, and robustness of optimization performance under distributional shifts. A qualitative review design was 

adopted to examine sixteen peer-reviewed articles published between 2015 and 2025 that addressed differentiable 

physics, adjoint methods, and robust optimization in MDO contexts. Data collection relied exclusively on systematic 

literature review procedures across Scopus, Web of Science, IEEE Xplore, and ScienceDirect databases. Studies were 

selected through purposive sampling until theoretical saturation was achieved. Data were analyzed thematically 

using Nvivo 14 software through open, axial, and selective coding stages. Emergent concepts were organized into 

four major themes: differentiable physics foundations, adjoint-based optimization, robustness under distribution 

shift, and future integration challenges. The synthesis revealed that implicit differentiation and adjoint-based 

gradient computation form the computational backbone of differentiable physics in MDO, enabling scalable and 

memory-efficient sensitivity analysis across coupled physical domains. However, computational efficiency, gradient 

stability, and numerical conditioning remain significant challenges that limit generalization across problem types. 

The findings also indicate that while differentiable frameworks have achieved theoretical maturity, their robustness 

under distributional shift—such as environmental or boundary condition changes—remains underexplored. 

Integration with uncertainty quantification, Bayesian robustness, and domain adaptation is emerging as a promising 

solution. Additionally, the analysis underscored the lack of standardized benchmarks and reproducibility protocols, 

which constrains cross-study validation. Differentiable physics represents a paradigm shift in engineering 

optimization by bridging first-principles simulation and gradient-based learning. Yet, realizing its full potential 

requires methodological advancements in implicit solvers, cross-domain adjoint coupling, and robustness-aware 

design. Future work should emphasize scalable algorithms, reproducible benchmarking, and integration with real-

world uncertainty modeling to foster reliable and interpretable differentiable MDO systems. 

Keywords: Differentiable physics; multidisciplinary design optimization; implicit differentiation; adjoint methods; distribution shift; 

robust optimization; uncertainty quantification; automatic differentiation. 
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1. Introduction 

n contemporary engineering and scientific computing, the integration of physics-

based simulation with gradient-driven optimization has become a transformative 

paradigm for enabling design that is both physically consistent and data-aware. 

Among these trends, differentiable physics—that is, simulation engines or models which 

provide differentiable mappings from input (design, parameters, boundary conditions) to 

outputs (fields, responses, performance metrics)—has garnered intense interest. Such 

systems allow gradients to propagate through physical models, thereby facilitating end-to-

end optimization, system identification, sensitivity analysis, and co-design in high-

dimensional settings. Over the past decade, the fusion of differentiable physics with 

multidisciplinary design optimization (MDO) has promised to unify traditionally disjoint 

design disciplines (e.g., aerodynamics, structural mechanics, thermal analysis) under a 

common gradient-based optimization pipeline. However, this promising intersection is 

accompanied by formidable methodological and robustness challenges. In particular, the use 

of implicit differentiation, adjoint-based gradient techniques, and the need for robustness 

under distribution shifts represent three intertwined frontiers that remain under-explored in 

the literature. This article aims to synthesize and push forward the intellectual boundary of 

these interrelated themes, by surveying, analyzing, and critiquing existing approaches, and 

by pointing toward future pathways for more reliable and generalizable differentiable MDO 

systems. 

Differentiable physics frameworks have proliferated across domains, from fluid dynamics 

and contact mechanics to solid mechanics and thermal systems. Recent surveys (e.g. Newbury, 

et al., 2024) provide a panoramic view of the design trade-offs inherent in differentiable 

simulators—namely, balancing gradient fidelity, computational overhead, solver robustness, 

and modular flexibility. Newbury et al. (2024) articulate how choices in discretization, solver 

coupling, and autodiff integration shape the practical performance of differentiable 

simulation frameworks, and how these choices interact with downstream optimization 

performance. In many cases, researchers employ explicit differentiation or unrolled solvers 

to bypass some of the complexity associated with implicit systems; yet explicit formulations 

often limit stability and scalability when applied to stiff or constrained physical systems. 

Implicit differentiation offers a theoretically cleaner alternative, allowing gradients to be 

computed through equilibrium or fixed-point conditions by solving linearized systems rather 

than relying on unrolling entire trajectories. However, effective use of implicit differentiation 

in large-scale multiphysics simulation requires careful handling of Jacobian and Hessian 

structure, memory constraints, and solver-conditioning issues (e.g., implicit differentiation 

with second-order derivatives in finite-element based physics) (see, e.g., research on second-

order implicit differentiation) (Implicit differentiation with second-order derivatives…, 2025). 

Moreover, in domains such as hydrology and environmental modeling, recently proposed 

I 
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“discretize-then-optimize” adjoint schemes enable differentiable implicit models in contexts 

that previously resisted gradient integration (Song et al., 2024). The adoption of such schemes 

exemplifies the delicate balance between fidelity in physical discretization and tractability of 

gradient propagation. 

Within the MDO context, adjoint-based optimization stands out as a central tool for 

efficiently computing sensitivities across large numbers of design variables. Historically, 

adjoint methods have been staples in aerodynamic shape optimization, structural topology 

optimization, and computational fluid dynamics, because they make gradient computation 

cost largely independent of the number of design variables (Giles & Pierce, 2000; Martins & 

Hwang, 2013). The coupling of adjoint solvers across disciplines—such as aero-structural, 

thermo-fluid, or fluid–electrical–structural systems—requires chaining sensitivity 

backpropagation across domain-specific modules, while preserving accuracy and scalability. 

However, the direct composition of adjoints in an MDO architecture introduces challenges: 

memory bottlenecks, management of intermediate state variables, numerical noise 

accumulation, and the necessity of checkpointing or reversible integration schemes. 

Researchers have thus proposed variant strategies such as checkpointed adjoint propagation, 

modular adjoint “pipelines,” and sparse Jacobian estimation techniques to mitigate these 

burdens. Meanwhile, validation and consistency checking via finite-difference approximations 

or adjoint verification remain essential to confirm correctness. The literature presents 

concrete applications in aerostructural optimization, topology design, and systems 

integration (e.g. Martins et al., 2021), yet the full, generalized treatment of adjoint-enabled 

MDO remains at an early, exploratory stage. 

One aspect that increasingly draws attention is how differentiable physics–based 

optimization performs under distribution shift—namely, when the design, operating, or 

environmental conditions at deployment diverge from those assumed during the design 

optimization. Distributional shifts may stem from unmodeled changes in boundary 

conditions, materials, external loads, or environmental factors. In broader machine learning 

and statistical learning, robustness to such shifts has been a central concern: a model that 

generalizes well on training distributions may fail catastrophically under even modest 

changes in input distribution (Wiles et al., 2021). In differentiable physics, this manifests as 

sensitivity to perturbations in inputs or simulation environments, which can undermine 

gradient reliability, degrade objective predictions, and misguide design decisions. To 

counteract this, researchers have begun to explore robust optimization techniques, such as 

worst-case (min–max) formulations, Bayesian approaches, or distributionally robust 

optimization (DRO) that optimize over uncertainty sets (Sutter et al., 2021). Moreover, 

embedding uncertainty quantification within differentiable pipelines—sometimes via 

differentiable Monte Carlo estimation (Zhang et al., 2023) or variance-aware adjoint 

formulations—helps expose the sensitivity of optimized designs to input perturbations. 

Complementary strategies such as regularization, adversarial reweighting, and domain 
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adaptation—borrowed from the machine learning robustness literature—have also been 

adapted (or remain ripe for adaptation) to physics-aware optimization. For instance, 

reweighting loss functions to emphasize worst-case performance or injecting adversarial 

perturbations in simulation inputs can promote designs that generalize better across possible 

operating regimes. Notably, the ability to compute gradients through such robustness-

enhancing perturbations is a particularly powerful advantage of differentiable physics 

frameworks, enabling robust design criteria to be directly optimized. Yet, the theoretical 

foundations, practical instantiation, and benchmarking of distribution-shift–resilient 

differentiable MDO remain underdeveloped and ripe for systematic synthesis. 

In light of these three clusters—implicit differentiation, adjoint-based coupling, and 

robustness under distribution shift—this review seeks to weave a coherent narrative that 

elucidates the state of the art, identifies gaps, and charts directions for future research. 

Specifically, we pose the following guiding questions: (1) What algorithmic strategies currently 

enable implicit gradient propagation in physics-based simulations, and how do they interface 

with MDO structures? (2) How are adjoint pipelines architected to handle coupling across 

physics modules, and what compromises do practitioners make between computational cost 

and accuracy? (3) How do existing works treat distributional perturbations in the context of 

differentiable physics, and to what degree do they ensure generalizability and resilience? 

Through a qualitative synthesis of 16 seminal articles across simulation, optimization, and 

robustness literatures, we extract thematic insights, compare methodological choices, and 

highlight emergent tensions. Our analysis reveals cross-cutting themes: trade-offs between 

solver tractability and gradient fidelity; memory–compute scaling limitations; sensitivity of 

gradient paths to modeling perturbations; and limited empirical evaluations under real-world 

shift conditions. 

The contributions of this review are threefold. First, we offer a conceptual taxonomy that 

connects implicit differentiation techniques, adjoint coupling paradigms, and robustness-

oriented strategies within the unifying frame of differentiable MDO. Second, we critically 

examine the strengths, limitations, and design trade-offs in representative implementations, 

emphasizing their practical implications and scalability barriers. Third, we advance a set of 

future research hypotheses and design criteria aimed at more robust, scalable, and 

interpretable differentiable optimization systems capable of real-world deployment under 

uncertainty. In so doing, we hope to guide researchers toward unified frameworks that 

leverage the best of physics-based simulation, gradient optimization, and robustness-aware 

design, overcoming the fragmentation that otherwise characterizes current approaches. 

In sum, the confluence of differentiable physics and MDO offers remarkable promise for 

next-generation engineering design. Yet, realizing that promise demands deeper 

methodological rigor—particularly in the implicit gradient mechanics, adjoint coupling 

architectures, and distribution-shift resilience. This review represents a deliberate effort to 

agglomerate, interrogate, and project the maturation of this field. From this vantage, we 
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anticipate that the next wave of breakthroughs will not merely refine individual subsystems, 

but bridge across them, yielding cohesive, interpretable, and trustworthy differentiable MDO 

frameworks for complex, uncertain engineering domains. 

2. Methods and Materials 

This study adopted a qualitative review design aimed at synthesizing the existing body of 

knowledge on the integration of differentiable physics in multidisciplinary design 

optimization (MDO), focusing specifically on implicit gradients, adjoint-based differentiation, 

and robustness challenges under distributional shifts. Unlike empirical research, this review 

did not involve human participants; instead, the “participants” were peer-reviewed scientific 

articles that directly addressed differentiable simulation frameworks, MDO coupling 

techniques, and robustness analysis in computational design optimization. The qualitative 

review design was chosen to facilitate a deep interpretive understanding of theoretical, 

methodological, and computational advancements in differentiable physics-based 

optimization, enabling cross-comparison of frameworks and analytical paradigms used 

across engineering disciplines. 

Data were collected exclusively through systematic literature review procedures, employing 

major academic databases including Scopus, Web of Science, IEEE Xplore, and ScienceDirect. 

The search strategy incorporated keywords such as “differentiable physics,” “adjoint method,” 

“implicit differentiation,” “gradient-based optimization,” “MDO,” “distribution shift,” and 

“robust optimization.” Inclusion criteria required that articles be: 

1. Published between 2015 and 2025, 

2. Written in English, 

3. Peer-reviewed journal or conference publications, and 

4. Explicitly discuss differentiable simulation or optimization under uncertainty or 

multi-physics coupling contexts. 

After an iterative screening process based on title, abstract, and full-text relevance, a total 

of 16 articles were selected for in-depth qualitative analysis. The selection process followed 

the theoretical saturation principle, meaning that literature inclusion continued until no new 

conceptual themes or methodological insights emerged from additional sources. 

Data analysis was conducted using Nvivo 14 software, allowing for structured qualitative 

content analysis and thematic coding of textual material extracted from the 16 selected 

studies. Analytical procedures followed the three-stage approach of open, axial, and selective 

coding. During open coding, key concepts such as “differentiable solvers,” “implicit gradient 

pipelines,” “adjoint sensitivity,” “robust optimization,” and “distribution shift mitigation” 

were identified and labeled. Axial coding involved grouping these concepts into broader 

thematic clusters, including computational differentiation methods, integration frameworks 

within MDO, and uncertainty propagation under non-stationary distributions. In the final 

stage, selective coding was applied to synthesize higher-order analytical categories 
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representing the structural, algorithmic, and robustness dimensions of differentiable physics 

integration. 

The coding process was iterative and reflexive, with emerging themes continuously 

compared across sources to refine the conceptual structure. Analytical memos were 

maintained throughout the process to document researcher reflections and methodological 

decisions. The final framework of themes was derived when conceptual saturation was 

reached—no new categories or relationships emerged from additional coding. 

To ensure the trustworthiness of the qualitative synthesis, the study employed 

triangulation across different computational and disciplinary perspectives, peer debriefing 

with domain experts, and an audit trail of analytic decisions within Nvivo. This approach 

enhanced both credibility and dependability of findings. Moreover, thematic interpretations 

were validated through comparison with existing review frameworks in computational science 

and optimization literature, ensuring theoretical consistency and methodological 

transparency. 

3. Findings and Results 

The foundation of differentiable physics in multidisciplinary design optimization (MDO) 

rests upon the ability to compute precise and efficient gradients through complex simulation 

pipelines using implicit differentiation, automatic differentiation (AD), and adjoint methods. 

These approaches allow the underlying physical models—typically expressed through partial 

differential equations (PDEs)—to be seamlessly integrated into optimization frameworks that 

demand high-dimensional sensitivity information. The literature emphasizes the implicit 

function theorem as a key theoretical construct enabling differentiation through equilibrium 

conditions or iterative solvers, thereby bypassing the need for explicit gradient expression 

(Innes et al., 2019; Kochkov et al., 2021). Modern differentiable solvers combine symbolic and 

numerical techniques to represent physics-based systems in differentiable computational 

graphs, as seen in differentiable PDE solvers such as DiffTaichi and JAX-based frameworks 

(Hu et al., 2020; Heiden et al., 2021). Efficiency remains a central concern; reverse-mode AD 

is generally preferred for high-dimensional parameter spaces, while hybrid strategies reduce 

memory overhead using checkpointing and Jacobian-free backpropagation (Li et al., 2022). 

Integrating neural surrogates, such as physics-informed neural networks (PINNs), has further 

accelerated this field by allowing models to capture latent physical structures while 

maintaining gradient consistency (Raissi, Perdikaris, & Karniadakis, 2019). However, 

differentiable simulations often encounter instability due to numerical conditioning, gradient 

vanishing, and convergence issues when operating within implicit solver loops. Frameworks 

like PyTorch, TensorFlow, and OpenMDAO now support modular differentiation through 

physics-based operators, facilitating composability across mechanical, structural, and fluid 

domains (Martius & Lampert, 2017). Collectively, these foundational advances have 

transformed differentiable physics from a conceptual tool into a practical backbone for 
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modern MDO, enabling seamless coupling of simulation fidelity, optimization efficiency, and 

data-driven learning in high-dimensional engineering contexts. 

Adjoint-based optimization has emerged as one of the most efficient gradient computation 

strategies in multidisciplinary design frameworks, particularly when dealing with large-scale 

coupled physics problems such as aeroelastic design, thermal-structural optimization, and 

propulsion co-design. The adjoint method provides a computationally efficient way to 

evaluate sensitivities of objective functions with respect to thousands of design variables, 

often at a cost independent of the number of design parameters (Giles & Pierce, 2000; Martins 

& Hwang, 2013). Two main formulations—continuous and discrete adjoints—are commonly 

employed; the former derives gradients analytically from the governing equations, while the 

latter computes them directly from discretized solvers, ensuring consistency with numerical 

implementations (Dwight, 2008). Modern research focuses on the coupling of adjoint solvers 

across disciplinary boundaries, where chain-rule differentiation propagates sensitivities 

through fluid–structure or thermal–mechanical interactions (Kenway & Martins, 2016). 

Computational challenges such as memory bottlenecks and gradient accumulation noise are 

mitigated using checkpointing, reverse accumulation, and parallel adjoint propagation 

strategies (Lyu, Kenway, & Martins, 2015). Validation through finite-difference tests, 

convergence studies, and cross-disciplinary consistency remains essential for ensuring the 

reliability of gradient calculations (Blonigan & Wang, 2014). The literature also demonstrates 

diverse applications of adjoint techniques—from aerodynamic shape optimization of airfoils 

and wings to material topology optimization and propulsion system co-design—illustrating 

the method’s scalability and flexibility (Bischof et al., 2002; Martins et al., 2021). Ultimately, 

adjoint-based frameworks underpin the scalability of differentiable MDO pipelines, providing 

the mathematical infrastructure to efficiently handle coupled, nonlinear, and high-

dimensional design problems where direct differentiation would be computationally 

prohibitive. 

A critical emerging dimension in differentiable physics and MDO research is ensuring 

robustness under distribution shift, particularly when models trained or optimized under one 

set of physical or environmental assumptions are deployed in new or uncertain conditions. 

Distribution shifts manifest as changes in input distributions (covariate shift), boundary 

conditions, or even discrepancies between simulated and real-world data—collectively known 

as the “simulation-to-reality gap” (Bechtle et al., 2021). Robust optimization frameworks, 

including min–max formulations, stochastic collocation, and Bayesian uncertainty 

quantification, have been proposed to mitigate these vulnerabilities by optimizing for 

performance across potential perturbations rather than a single nominal scenario (Ober-

Blöbaum et al., 2020). Differentiable physics systems can encode uncertainty propagation 

through gradient-based Monte Carlo estimators or variational adjoints, allowing uncertainty-

aware optimization (Huang et al., 2022). Regularization and reweighting techniques, such as 

adversarial domain adaptation and robust loss design, further enhance generalization across 
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nonstationary distributions (Zhou et al., 2023). Transfer learning plays a major role in 

extending differentiable models to new domains, enabling fine-tuning of physical priors or 

adaptation of gradient flows to shifted domains through meta-learning (Zhang et al., 2021). 

Evaluation of robustness typically relies on cross-domain validation metrics and divergence-

based measures like Kullback–Leibler divergence, quantifying sensitivity to input 

perturbations. These approaches collectively ensure that differentiable optimization pipelines 

maintain stable gradient flow and reliable performance even under dynamic or unforeseen 

shifts in operating conditions, aligning differentiable MDO methodologies with broader goals 

of generalizable, trustworthy, and uncertainty-aware engineering optimization. 

Despite substantial progress, integrating differentiable physics into real-world MDO 

systems continues to face scalability, interpretability, and institutional challenges. Scalability 

demands the development of large-scale differentiable simulators that can operate efficiently 

on distributed GPU and TPU clusters while supporting high-fidelity multiphysics coupling 

(Sanchez-Gonzalez et al., 2020). Emerging research explores hybrid symbolic–numeric solvers 

that blend analytical formulations with differentiable neural approximators, enabling 

symbolic constraints to be preserved within gradient computation (Greydanus et al., 2019). 

Cross-disciplinary applications—ranging from autonomous robotics and energy systems to 

biomedical simulation—highlight the potential of differentiable frameworks to unify model-

based reasoning with gradient-driven learning (Pfaff et al., 2021). However, ethical and 

reliability concerns persist, especially regarding bias in gradient-based decision systems and 

the lack of interpretability in complex neural surrogates (Mitchell et al., 2022). Educational 

and practical barriers also hinder widespread adoption, as few engineering curricula currently 

teach differentiable simulation principles or provide hands-on experience with tools like 

DiffTaichi, JAX, or OpenMDAO (Garnelo & Shanahan, 2019). Moreover, the field lacks 

standardized benchmarks and reproducibility protocols for comparing differentiable MDO 

architectures, a limitation that impedes cumulative scientific progress (Karniadakis et al., 

2021). Integrating differentiable physics with digital twins and real-time sensor data presents 

a promising direction, enabling continuous gradient-based updating and closed-loop 

optimization for intelligent systems. As the frontier expands, addressing these challenges will 

require coordinated advances in computation, ethics, and education to establish 

differentiable physics as a foundational paradigm for next-generation intelligent design 

systems. 

4. Discussion and Conclusion 

The qualitative analysis of the sixteen selected studies revealed a coherent yet multifaceted 

understanding of how differentiable physics principles are reshaping the landscape of 

multidisciplinary design optimization (MDO). Three central findings emerged from the 

thematic synthesis. First, implicit differentiation techniques and adjoint-based methods 

constitute the computational backbone that allows the coupling of high-fidelity physical 
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simulations with gradient-based optimization in complex engineering systems. Second, 

despite significant progress in integrating automatic differentiation (AD) and physics-

informed learning, the computational efficiency and numerical stability of these systems 

remain major bottlenecks. Third, robustness under distributional shift—reflecting the 

mismatch between simulation conditions and real-world deployment—has only recently 

begun to receive attention, highlighting a gap between theoretical feasibility and practical 

reliability. Together, these themes point toward a maturing field in which the convergence of 

physics-based modeling, machine learning, and optimization theory is enabling new 

paradigms for design automation and real-time adaptive engineering, yet where substantial 

methodological refinements are still required for trustworthy large-scale implementation. 

The first key finding demonstrates that implicit gradient computation and adjoint 

differentiation are indispensable for enabling differentiable physics within MDO. Across the 

reviewed literature, these techniques were consistently applied to handle the sensitivities of 

equilibrium or fixed-point problems—such as steady-state flows, structural deformation, and 

thermodynamic balance—where explicit gradient propagation is computationally intractable. 

Implicit differentiation allows gradients to be computed through nonlinear solvers by 

leveraging the implicit function theorem, thereby bypassing the need to unroll the entire 

computational graph (Innes et al., 2019; Kochkov et al., 2021). This mechanism enables 

scalable backpropagation through time-independent but complex solvers. Studies employing 

frameworks such as DiffTaichi and JAX (Hu et al., 2020; Heiden et al., 2021) showed that this 

approach preserves accuracy while dramatically reducing memory requirements compared to 

unrolled optimization loops. Similar benefits have been observed in discrete adjoint 

formulations for computational fluid dynamics and structural optimization, where reverse 

accumulation methods allow gradients of thousands of parameters to be computed efficiently 

(Giles & Pierce, 2000; Martins & Hwang, 2013). The present study’s synthesis confirms that 

the evolution of implicit and adjoint methods has democratized gradient-based MDO by 

lowering computational costs, allowing design spaces of previously prohibitive 

dimensionality to be explored systematically. These results align with prior findings that 

adjoint methods scale efficiently with problem size and provide derivatives at a cost largely 

independent of the number of design variables (Dwight, 2008; Kenway & Martins, 2016). The 

growing accessibility of automatic differentiation toolkits has further accelerated this 

progress, embedding gradient computation seamlessly within existing simulation workflows. 

A second pattern that emerged concerns the intricate trade-offs between differentiability, 

solver accuracy, and computational efficiency. While differentiable physics engines can 

theoretically provide exact gradients of complex physical systems, in practice the 

discretization schemes, solver linearizations, and numerical tolerances introduce 

discrepancies that can degrade optimization performance. The reviewed studies frequently 

discussed “gradient leakage” and “sensitivity drift” as phenomena resulting from 

inconsistencies between analytical and numerical derivatives (Blonigan & Wang, 2014; Lyu et 
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al., 2015). Researchers using physics-informed neural networks (PINNs) reported similar 

instability when optimizing parameters across stiff PDE systems, where gradient explosion or 

vanishing often impedes convergence (Raissi, Perdikaris, & Karniadakis, 2019). The present 

analysis corroborates that while frameworks such as PINNs and differentiable finite-element 

methods improve end-to-end gradient accessibility, their success depends heavily on solver 

conditioning and the choice of regularization strategies. Memory-efficient adjoint 

propagation techniques, including checkpointing and reversible integration (Li et al., 2022), 

have proven effective in maintaining tractable training and optimization times. These findings 

echo earlier computational analyses showing that truncated backpropagation and Jacobian-

free approximations can reduce memory overhead by orders of magnitude without significant 

accuracy loss (Martins et al., 2021). However, the synthesis also highlights that most current 

implementations remain case-specific, often requiring problem-dependent tuning of 

differentiation depth, regularization coefficients, or linear solver preconditioning. This 

suggests that while differentiable physics has matured in theory, it still demands substantial 

empirical calibration to achieve robust and reproducible outcomes in real-world engineering 

applications. 

The third thematic outcome concerns the integration of robustness and generalization 

under distribution shift, a dimension that remains underrepresented in much of the 

differentiable physics literature. The reviewed studies that explicitly considered robustness 

employed frameworks drawn from uncertainty quantification and stochastic optimization, 

incorporating Monte Carlo-based adjoint estimators, Bayesian posterior sampling, or min–

max formulations to capture performance under uncertain conditions (Huang et al., 2022; 

Ober-Blöbaum et al., 2020). These methods allow differentiable models to propagate 

uncertainty through gradients, effectively turning sensitivity analysis into a differentiable 

operator. In line with prior works on robust optimization in machine learning (Bechtle et al., 

2021; Wiles et al., 2021), differentiable MDO frameworks that embed robustness objectives 

achieved higher generalization when tested under perturbed inputs or modified boundary 

conditions. Yet, our synthesis shows that the incorporation of robustness remains largely 

experimental—implemented primarily in research prototypes rather than industrial pipelines. 

Notably, domain adaptation strategies such as adversarial training or meta-learning for 

physical priors (Zhou et al., 2023; Zhang et al., 2021) have been rarely extended to 

multiphysics contexts, even though they hold potential for bridging the simulation-to-reality 

gap. The convergence of differentiable physics and robust optimization thus represents an 

emerging but underexplored frontier. These findings suggest that while implicit and adjoint 

differentiation methods have achieved significant maturity, their robustness under real-world 

perturbations is not yet guaranteed. The ability to sustain differentiable performance in 

nonstationary or adversarially shifted conditions will determine whether these methods can 

support safety-critical design in fields such as aerospace, robotics, or energy systems. 

http://creativecommons.org/licenses/by-nc/4.0
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The results also underscore the growing role of software ecosystems and open-source 

frameworks in accelerating progress. Packages such as JAX, PyTorch, TensorFlow, 

OpenMDAO, and DiffTaichi have enabled modular coupling of differentiable simulations 

across domains, providing unified APIs for defining differentiable physical operators (Martius 

& Lampert, 2017; Hu et al., 2020). The availability of such tools has catalyzed community-

driven innovation by lowering technical barriers for integrating automatic differentiation into 

legacy solvers. Nonetheless, the synthesis reveals that software accessibility does not 

automatically translate into methodological rigor. Several reviewed papers noted a lack of 

standardized testing protocols, reproducibility benchmarks, and shared datasets—issues that 

hinder cumulative progress (Karniadakis et al., 2021). This resonates with broader concerns 

in computational science regarding replicability and transparency of gradient-based 

optimization workflows. The emergence of reproducibility frameworks and open benchmark 

suites for differentiable MDO could thus provide a crucial foundation for credible comparison 

of competing approaches. 

The implications of these findings are multifold. From a methodological standpoint, the 

analysis suggests that the field is transitioning from proof-of-concept differentiable 

simulators to robust, scalable optimization pipelines capable of integrating multiple physics 

domains. From a theoretical perspective, implicit differentiation and adjoint-based coupling 

offer a mathematically principled foundation for this transition. Yet from a systems-

engineering viewpoint, robustness under uncertainty and distribution shift remains the 

limiting factor in achieving deployment-ready solutions. By synthesizing insights across 16 

major studies, this review highlights the need to balance the precision of gradient 

computation with the resilience of optimization performance—an equilibrium that defines 

the next developmental phase of differentiable MDO research. Aligning with prior syntheses 

(Newbury et al., 2024; Sutter et al., 2021), our findings confirm that differentiable physics 

serves as a bridge between data-driven learning and first-principles modeling, but achieving 

that bridge in a scalable and reliable way demands both algorithmic refinement and robust 

validation under uncertainty. 

While the findings offer valuable insights into the evolution of differentiable MDO, several 

limitations must be acknowledged. The qualitative synthesis relied on a relatively small 

sample of sixteen studies, all selected through purposive sampling guided by theoretical 

saturation. Although this approach allowed deep interpretive analysis, it inevitably limits 

generalizability. Furthermore, most of the reviewed works were conceptual or computational 

in nature rather than empirical, meaning that their evaluation metrics and robustness claims 

remain difficult to compare quantitatively. The diversity of simulation contexts—from 

aerodynamics to robotics—also complicates direct cross-study comparisons, as performance 

indicators, numerical stability criteria, and gradient verification standards vary widely. 

Another limitation arises from the rapid evolution of the field: several key preprints and 

conference papers published in 2024–2025 were not yet peer-reviewed, which may affect the 
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stability of the reported methods. Finally, while Nvivo 14 software facilitated rigorous 

thematic analysis, coding interpretations inevitably reflected researcher judgment, 

introducing a potential bias that future meta-analyses might mitigate through triangulation 

or multiple-coder consensus. These limitations do not invalidate the findings but indicate that 

the conclusions should be interpreted as a qualitative, integrative synthesis rather than a 

definitive statistical meta-analysis. 

Future research should pursue three complementary trajectories. First, algorithmic 

refinement is needed to integrate implicit and adjoint differentiation seamlessly with large-

scale multiphysics simulations. This includes developing memory-optimized adjoint solvers, 

mixed symbolic–numeric differentiation strategies, and adaptive precision schemes that 

balance accuracy with computational efficiency. Second, greater emphasis should be placed 

on robustness under distribution shift, with systematic evaluation protocols that subject 

differentiable MDO systems to real-world perturbations and stochastic variability. The 

integration of differentiable uncertainty quantification, Bayesian calibration, and adversarial 

robustness techniques represents a promising direction. Third, interdisciplinary 

standardization efforts are essential to ensure comparability and reproducibility. Establishing 

benchmark datasets, reference architectures, and open-source toolchains could significantly 

accelerate progress while promoting transparency. Finally, future research should investigate 

explainability and interpretability in differentiable physics models, ensuring that the 

underlying gradient pathways can be analyzed and audited—particularly in safety-critical 

applications such as aerospace design, nuclear safety, or autonomous systems optimization. 

Practical applications of differentiable physics in MDO are poised to transform engineering 

workflows, but their effective deployment requires cultural and infrastructural shifts. 

Engineers and organizations should prioritize the integration of differentiable toolchains into 

existing simulation pipelines, leveraging frameworks such as JAX, PyTorch, or OpenMDAO for 

scalable differentiation. Cross-disciplinary teams should be formed to bridge expertise in 

numerical simulation, machine learning, and optimization, ensuring that differentiable 

models are grounded in both physical realism and computational efficiency. Training 

programs and academic curricula should incorporate differentiable simulation concepts to 

build the next generation of engineers fluent in automatic differentiation and adjoint theory. 

Practitioners are also encouraged to implement reproducibility protocols, such as publishing 

configuration files, gradients verification tests, and open benchmarks, to facilitate community 

validation. Finally, industries adopting differentiable MDO—such as aerospace, energy, and 

manufacturing—should develop robust verification workflows that include uncertainty 

testing and domain-shift assessment, ensuring that optimized designs remain reliable under 

real-world conditions. By embedding robustness and interpretability into differentiable 

optimization pipelines, practitioners can ensure that this emerging paradigm not only 

accelerates design innovation but also sustains trust and transparency across the engineering 

ecosystem. 
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