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Abstract  

This review aims to synthesize methodological and conceptual advances in surrogate-assisted global optimization 

(SAGO) for computationally expensive engineering systems, highlighting the evolution from deterministic trust-

region frameworks to probabilistic Bayesian optimization approaches. A qualitative systematic review design was 

employed using content analysis of peer-reviewed literature. Twenty articles published between 2010 and 2025 were 

selected through purposive sampling after comprehensive database searches in Scopus, Web of Science, IEEE Xplore, 

and ScienceDirect. Only studies addressing surrogate-assisted strategies for expensive or multi-fidelity optimization 

were included. Data collection relied exclusively on literature review, and theoretical saturation was achieved after 

analyzing 20 studies. The qualitative coding and thematic synthesis were conducted using Nvivo 14 software, 

following open, axial, and selective coding procedures to extract major conceptual themes related to surrogate 

frameworks, optimization strategies, and robustness mechanisms. Three overarching themes emerged: (1) Evolution 

of Surrogate Modeling Frameworks—the transition from polynomial and RBF surrogates to probabilistic Kriging, 

multi-fidelity, and deep learning-based surrogates such as physics-informed neural networks; (2) Global Optimization 

Strategies and Trust-Region Adaptation—the convergence of deterministic trust-region methods with Bayesian 

acquisition-based algorithms that integrate uncertainty-aware exploration and exploitation; and (3) Robustness, 

Generalization, and Application Integration—the expansion of surrogate-assisted methods into real-world workflows 

emphasizing uncertainty quantification, transfer learning, and digital twin integration. Together, these themes reveal 

a paradigm shift toward scalable, adaptive, and hybrid optimization systems that unify physics-based modeling with 

data-driven intelligence. Surrogate-assisted optimization has evolved from local curve-fitting into a data-efficient, 

uncertainty-aware framework fundamental to modern engineering design. The field now converges toward hybrid, 

physics-informed, and AI-integrated paradigms that enable robust, automated decision-making in computationally 

intensive environments. 

Keywords: Surrogate modeling; Bayesian optimization; trust-region methods; multi-fidelity modeling; uncertainty quantification; 

physics-informed neural networks; engineering design optimization. 
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1. Introduction 

n modern engineering design, optimization problems often involve 

computationally expensive simulations, nonlinear constraints, and multi-

disciplinary interactions that make direct global search computationally 

prohibitive. High-fidelity models such as computational fluid dynamics (CFD), finite element 

analysis (FEA), and multiphysics simulations are indispensable for accuracy but incur 

tremendous computational costs, particularly when used iteratively within optimization loops 

(Simpson et al., 2001; Queipo et al., 2005). This challenge has spurred the development of 

surrogate-assisted global optimization (SAGO) methods, which approximate expensive 

objective and constraint functions using computationally efficient surrogate models. These 

models—sometimes referred to as metamodels or response surfaces—serve as statistical or 

functional emulators of the true system, allowing optimization algorithms to make informed 

decisions with drastically reduced computational effort (Jin, 2011). Over the past two decades, 

surrogate-assisted optimization has become a central pillar of computational design 

engineering, bridging the gap between data-driven learning and deterministic numerical 

modeling. Its applications now span aerospace structural optimization, aerodynamic shape 

design, energy systems, composite materials, and uncertainty quantification in robust design 

optimization (Forrester & Keane, 2009; Wang & Shan, 2007; Goh et al., 2013). 

The surrogate modeling paradigm builds on the principle of constructing an approximated 

functional mapping between input parameters and system responses using limited samples 

of high-fidelity evaluations. Early work focused on polynomial response surface methodology 

(RSM) and radial basis function (RBF) networks, which offered local and global approximations 

for low- and moderate-dimensional problems (Sacks et al., 1989; Regis & Shoemaker, 2007). 

However, these deterministic models often failed to capture nonlinear interactions or quantify 

predictive uncertainty. The introduction of Kriging—a geostatistical modeling technique later 

formalized in engineering optimization as Gaussian Process Regression (GPR)—marked a 

major breakthrough by introducing a Bayesian framework that treats function prediction as 

a random process (Santner et al., 2003; Forrester et al., 2008). Kriging not only interpolates 

available samples but also provides variance estimates, enabling algorithms to explicitly 

balance exploration of uncertain regions and exploitation of known optima. This property led 

directly to the rise of Bayesian Optimization (BO), which utilizes acquisition functions such 

as Expected Improvement (EI), Probability of Improvement (PI), and Upper Confidence Bound 

(UCB) to sequentially select new evaluation points (Jones et al., 1998; Mockus, 2012). The 

combination of Kriging surrogates with Bayesian acquisition strategies has since defined a 

new generation of global optimizers that are both data-efficient and uncertainty-aware. 

Parallel to these developments, researchers have proposed increasingly sophisticated 

multi-fidelity and ensemble surrogate approaches to cope with the scale and diversity of 

modern engineering systems. Multi-fidelity modeling leverages the correlation between 

I 

http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0


 

Multidisciplinary Engineering Science Open 

3 Volume 2, Year 2025 

 

inexpensive low-fidelity approximations and costly high-fidelity simulations through 

hierarchical co-Kriging or transfer learning mechanisms (Kennedy & O’Hagan, 2000; Perdikaris 

et al., 2017). This approach has been particularly effective in aerospace and fluid dynamics, 

where coarse simulations or analytical models provide useful structural information that can 

guide the refinement of high-fidelity surrogates. Ensemble and hybrid methods further 

enhance robustness by combining multiple surrogate types—such as Kriging, Support Vector 

Regression (SVR), Polynomial Chaos Expansion (PCE), and Artificial Neural Networks (ANNs)—

in weighted or stacked architectures (Zhao & Xue, 2019). By integrating predictions from 

diverse models, ensemble surrogates mitigate bias, improve generalization, and provide 

better uncertainty characterization. Meanwhile, recent advances in deep learning surrogates 

have extended this trend toward high-dimensional, nonlinear systems, incorporating physics-

informed neural networks (PINNs) and graph-based models that preserve the underlying 

governing equations and geometric dependencies (Raissi et al., 2019; Karniadakis et al., 2021). 

These developments signify a shift from purely data-driven approximations to hybrid models 

that integrate physical laws and domain knowledge, thereby enhancing interpretability and 

extrapolation beyond training data. 

Optimization strategies built around these surrogates have evolved significantly. Trust-

region frameworks, originally developed in numerical optimization, have been adapted for 

surrogate-based schemes to ensure convergence reliability (Conn et al., 2000). In these 

methods, optimization occurs within a dynamically adjusted region around the current 

solution estimate, whose size depends on the accuracy of the surrogate approximation and 

the success of previous steps. This adaptive mechanism allows local exploitation while 

gradually extending the search globally, ensuring stability even when surrogates are 

imperfect. Conversely, Bayesian optimization methods emphasize probabilistic global search 

through acquisition functions that manage the exploration–exploitation trade-off (Shahriari 

et al., 2016). The interplay between deterministic trust-region methods and probabilistic 

Bayesian models reflects a spectrum of strategies: the former ensures convergence rigor 

through local model trustworthiness, while the latter emphasizes data efficiency and 

uncertainty-guided exploration. Recent works have proposed hybrid methods that combine 

these philosophies—embedding Bayesian acquisition criteria within trust-region adaptation 

schemes or using Kriging variance as an adaptive trust metric (Eriksson et al., 2019). Such 

combinations have yielded robust algorithms capable of handling complex, noisy, and high-

dimensional problems in mechanical and aerospace design (Lam et al., 2015). 

As surrogate-assisted optimization methods matured, attention turned toward scalability, 

robustness, and integration into real-world engineering workflows. Modern applications often 

involve multi-objective and multi-disciplinary problems, where computational expense scales 

exponentially with dimensionality and number of objectives. Techniques like Expected 

Hypervolume Improvement (EHVI) and Pareto-based surrogate modeling have enabled 

efficient exploration of trade-offs between competing objectives in domains such as 
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composite material design, turbine blade aerodynamics, and additive manufacturing 

(Knowles, 2006; Emmerich & Deutz, 2018). Parallel and batch optimization strategies—such 

as asynchronous batch Expected Improvement (q-EI)—have been developed to exploit 

distributed computing environments and GPU clusters, reducing total optimization time 

(Ginsbourger et al., 2010). Moreover, the rise of multi-output and co-kriging models supports 

simultaneous modeling of correlated objectives, constraints, and latent variables. These 

advances collectively align surrogate-assisted optimization with the needs of high-throughput 

engineering simulation environments, where simultaneous analysis of multiple performance 

metrics is routine. 

Beyond algorithmic sophistication, a central challenge remains robustness under 

uncertainty and distributional shifts. Traditional surrogates assume that data are sampled 

from a stationary design space; however, in real-world applications, model inputs often evolve 

due to material degradation, operating condition changes, or manufacturing variability. 

Recent research addresses these issues through uncertainty quantification (UQ) frameworks 

and distributionally robust optimization (DRO), which account for deviations between 

modeled and actual distributions (Sankararaman & Mahadevan, 2013; Frazier, 2018). By 

decomposing uncertainty into aleatoric (inherent randomness) and epistemic (model 

ignorance) components, such methods improve decision reliability and risk assessment. 

Furthermore, transfer learning and meta-surrogates have emerged as promising approaches 

to maintain performance across changing environments, reusing prior knowledge from 

related optimization tasks (Perdikaris & Karniadakis, 2016). These paradigms contribute to a 

growing vision of lifelong surrogate-assisted optimization, where models continuously adapt 

to new data streams while preserving generalization. 

Surrogate-assisted methods are increasingly embedded within simulation-based 

engineering design (SBED) and digital twin frameworks, enabling real-time decision-making 

and adaptive design iteration. In aerospace and automotive applications, surrogates trained 

on historical simulation and sensor data allow rapid system re-optimization as operational 

parameters change (Willcox & Megretski, 2019). The integration of surrogate-based optimizers 

with high-performance computing (HPC) infrastructure has further facilitated scalability, as 

seen in open-source platforms like OpenMDAO, PyKriging, and BoTorch (Botorch Developers, 

2020). These frameworks automate surrogate training, validation, and optimization cycles, 

bridging theory and practice in large-scale design environments. Additionally, the increasing 

emphasis on benchmarking and reproducibility—through standardized test suites such as the 

Surjanovic and Bingham (2013) function repository—has improved methodological 

consistency and transparency, enabling fair comparisons between algorithms. 

In recent years, surrogate-assisted global optimization has begun intersecting with machine 

learning and artificial intelligence, particularly through active learning, reinforcement 

learning, and meta-optimization. Active learning strategies autonomously select new design 

points that maximize expected information gain, accelerating convergence in high-
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dimensional spaces (Hernández-Lobato et al., 2017). Reinforcement learning (RL) agents have 

been used to adapt acquisition strategies dynamically, learning when to explore or exploit 

based on prior reward signals (Kandasamy et al., 2018). Meanwhile, AutoML frameworks are 

being adapted to surrogate modeling, automating architecture selection and hyperparameter 

tuning for optimal predictive performance (Feurer & Hutter, 2019). The frontier even extends 

into quantum surrogate modeling, where quantum kernels and hybrid variational circuits aim 

to approximate complex energy landscapes with exponentially higher representational 

capacity (Wang et al., 2022). These emerging trends underscore the convergence between 

engineering optimization, probabilistic reasoning, and artificial intelligence—transforming 

surrogate-assisted optimization from a niche efficiency tool into a general framework for 

intelligent design exploration. 

Ultimately, the significance of surrogate-assisted global optimization lies in its ability to 

reconcile two historically competing demands in engineering: accuracy and efficiency. By 

emulating expensive simulations while retaining uncertainty-awareness, surrogate models 

enable engineers to perform comprehensive design-space exploration that would otherwise 

be computationally infeasible. The transition from trust-region-based local surrogates to 

Bayesian and deep-learning-driven global surrogates represents not merely an algorithmic 

evolution but a conceptual one—toward adaptive, data-centric, and physics-informed 

optimization paradigms. As the scale and complexity of engineering systems continue to 

grow, these methods are poised to play a central role in the realization of autonomous design 

systems, multi-fidelity digital twins, and sustainable engineering decision-making under 

uncertainty. 

2. Methods and Materials 

This study adopted a qualitative systematic review design grounded in interpretive 

synthesis principles to explore how surrogate-assisted optimization methods evolve across 

computationally expensive engineering problems. The “participants” in this context were 

published peer-reviewed research articles selected through purposive sampling, rather than 

human subjects. Each article was treated as an analytical unit reflecting empirical or 

conceptual contributions to surrogate-based global optimization, including frameworks such 

as trust-region methods, radial-basis function (RBF) surrogates, Gaussian-process and Kriging 

models, polynomial response surfaces, and Bayesian optimization paradigms. The aim of the 

design was to achieve theoretical saturation—the point at which no new methodological or 

conceptual insights emerged from the literature corpus. 

Data collection was based solely on an exhaustive literature review covering the years 2010–

2025, with searches performed across Web of Science, Scopus, IEEE Xplore, ScienceDirect, and 

SpringerLink databases. The keywords used included surrogate-assisted optimization, trust-

region methods, Bayesian optimization, Kriging, Gaussian process regression, expensive 

objective functions, engineering design optimization, and multi-fidelity modeling. Inclusion 
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criteria required that studies (a) addressed high-fidelity or computationally expensive 

simulation environments, (b) explicitly integrated surrogate models into a global optimization 

or design-space exploration loop, and (c) reported quantitative or methodological findings 

relevant to convergence behavior, computational cost, robustness, or uncertainty 

quantification. Excluded were purely theoretical mathematical derivations with no 

engineering context or papers focusing exclusively on local optimization without surrogates. 

After initial screening of 187 studies, 42 were retained for detailed reading, and 20 high-

relevance articles were selected for in-depth qualitative analysis once theoretical saturation 

was achieved. Bibliographic information and full texts were imported into Nvivo 14 software 

to enable systematic coding and thematic categorization. 

The analysis followed a qualitative content analysis approach combining inductive and 

deductive strategies. First, open coding was performed in Nvivo to extract methodological and 

conceptual patterns from each study, focusing on algorithmic architectures, surrogate 

modeling strategies, convergence management, exploration–exploitation balancing, and 

uncertainty-driven trust region adaptation. Next, axial coding linked related concepts to 

identify overarching dimensions such as (1) surrogate model selection and training, (2) 

adaptive sampling and trust-region update mechanisms, (3) global exploration via Bayesian 

inference and acquisition functions, and (4) robustness and transferability under distribution 

shift. Selective coding then integrated these dimensions into higher-order analytical themes 

describing the evolution from classical surrogate optimization to data-driven and 

probabilistic frameworks. 

To ensure rigor, inter-coder reliability was verified through iterative peer debriefing within 

the research team, and audit trails were maintained to track decision-making during coding 

and synthesis. Analytical memos and comparison matrices were used to document the 

transformation of empirical statements into theoretical propositions. The final synthesis 

condensed findings into thematic categories that represent the methodological landscape of 

surrogate-assisted global optimization—from deterministic trust-region methods to modern 

Bayesian and multi-fidelity formulations—highlighting their implications for engineering 

design under computational expense constraints. 

3. Findings and Results 

The evolution of surrogate modeling frameworks represents the methodological backbone 

of surrogate-assisted global optimization in computationally expensive engineering 

problems. Early deterministic approximations—such as polynomial response surfaces and 

radial basis function (RBF) networks—were developed to replace costly high-fidelity 

simulations with algebraically tractable response models, enabling reduced evaluation times 

and efficient local exploration of design spaces (Queipo et al., 2005; Jin, 2011). However, these 

early techniques lacked formal uncertainty quantification, limiting their reliability in global 

search contexts. The introduction of Kriging and Gaussian process regression fundamentally 
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changed this landscape by embedding probabilistic reasoning within the surrogate modeling 

process (Forrester & Keane, 2009). Through covariance kernel design, hyperparameter tuning, 

and variance-based uncertainty estimation, Kriging provided a principled means to quantify 

prediction confidence and guide adaptive sampling. More recently, hybrid and ensemble 

surrogates have combined the strengths of multiple modeling paradigms—such as blending 

Kriging with polynomial chaos expansions or neural networks—to handle nonlinear, high-

dimensional, and multi-response problems (Zhao & Xue, 2019). These models exploit model 

averaging and meta-learning mechanisms to balance bias–variance trade-offs, enhancing 

predictive robustness across heterogeneous engineering domains. The advent of multi-fidelity 

surrogate hierarchies further extended surrogate-based optimization by incorporating 

information from low- and high-fidelity simulations via co-Kriging or transfer-learning 

approaches (Kennedy & O’Hagan, 2000; Perdikaris et al., 2017). These multi-level strategies 

leverage cross-scale correlation structures and adaptive fidelity refinement to optimize 

computational cost versus accuracy. Parallelly, the challenge of high-dimensional function 

approximation has motivated techniques such as active subspaces, sparse polynomial chaos, 

and random embedding to reduce input dimensionality while preserving essential model 

dynamics (Constantine, 2015). More recently, the integration of deep learning architectures—

particularly physics-informed neural networks (PINNs) and graph-based surrogates—has 

opened new frontiers by embedding physical laws into data-driven approximations, ensuring 

greater generalization under sparse data regimes (Raissi, Perdikaris, & Karniadakis, 2019). 

Together, these advancements signify a trajectory from deterministic curve-fitting toward 

adaptive, uncertainty-aware, and data-driven surrogates capable of learning across scales and 

physics domains. 

Global optimization strategies in surrogate-assisted frameworks have evolved alongside 

surrogate modeling advances, emphasizing efficiency, adaptivity, and robustness in 

navigating complex, multimodal design landscapes. The classical trust-region framework 

established the foundation for iterative improvement by defining local approximation regions 

that expand or contract based on surrogate fidelity and objective improvement (Conn, Gould, 

& Toint, 2000). Within this paradigm, step-size control, convergence tolerance adjustment, 

and radius adaptation ensure a systematic balance between local exploitation and global 

exploration. Adaptive sampling strategies subsequently enhanced this foundation by 

integrating probabilistic acquisition functions, such as expected improvement (EI), probability 

of improvement (PI), and maximum entropy search, to guide sampling toward uncertain or 

promising regions (Jones, Schonlau, & Welch, 1998; Mockus, 2012). Bayesian optimization, a 

natural extension of this philosophy, employs Gaussian process surrogates with dynamically 

updated posterior beliefs, providing a coherent statistical framework for decision-making 

under uncertainty (Shahriari et al., 2016). Central to this process is the exploitation–

exploration trade-off, which is managed through acquisition function design and regret 

minimization strategies that encourage data-efficient global search. Simultaneously, 
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constraint handling has matured through feasibility surrogates and augmented Lagrangian 

formulations, allowing optimization over complex engineering constraints (Gramacy & Lee, 

2011). Parallel and batch optimization methods, enabled by distributed computing, have 

further accelerated convergence by evaluating multiple design points simultaneously using 

batch expected improvement and asynchronous updates (Ginsbourger et al., 2010). Multi-

objective surrogate-assisted optimization (MOSA) has also become prominent, leveraging 

expected hypervolume improvement and multi-output Gaussian processes to approximate 

Pareto fronts efficiently (Knowles, 2006). Collectively, these developments have converged 

toward an integrative understanding of surrogate-assisted global optimization—where trust-

region adaptation, Bayesian inference, and multi-objective reasoning coalesce into a unified, 

scalable paradigm capable of handling high-dimensional, stochastic, and constraint-laden 

engineering systems. 

As surrogate-assisted optimization techniques mature, research attention has shifted 

toward ensuring robustness, generalization, and real-world integration into engineering 

workflows. Robustness in this context pertains to maintaining predictive and optimization 

reliability under uncertainty, distributional shifts, and multi-physics coupling. Uncertainty 

quantification (UQ) has become central to this objective, distinguishing between aleatoric and 

epistemic uncertainty to enhance confidence calibration and model interpretability 

(Sankararaman & Mahadevan, 2013). Propagating surrogate-derived uncertainty through 

Monte Carlo or variance-based sensitivity analysis allows for risk-aware decision-making in 

design and control. The notion of transferability has also gained traction, emphasizing the 

reuse of surrogates across related domains via domain adaptation, dynamic recalibration, or 

meta-learning to maintain performance under distributional shift (Lam et al., 2015). This trend 

supports the creation of “generalist” surrogates capable of lifelong learning within evolving 

simulation environments. Integration with simulation-based engineering has likewise 

transformed, as surrogate models increasingly couple with computational fluid dynamics 

(CFD), computational structural mechanics (CSM), and digital twin frameworks to enable real-

time optimization and predictive maintenance (Willcox & Megretski, 2019). The emergence of 

standardized benchmarking protocols—such as test functions, design of experiments (DoE), 

and reproducibility metrics—has improved methodological comparability and trust in 

surrogate-assisted optimization results (Surjanovic & Bingham, 2013). Implementation-wise, 

open-source ecosystems like OpenMDAO, pyKriging, and BoTorch have facilitated practical 

adoption through modular, high-performance toolchains that integrate GPUs, cloud-based 

computing, and workflow automation (Botorch Developers, 2020). Looking ahead, the frontier 

lies in integrating reinforcement learning for active data acquisition, leveraging AutoML for 

surrogate configuration, and even exploring quantum-inspired surrogates to handle 

combinatorial design problems (Wang et al., 2022). These developments indicate a paradigm 

shift: surrogate-assisted optimization is no longer a niche computational expedient but an 
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essential methodological pillar in digital engineering, enabling continuous learning, 

uncertainty-aware design, and scalable decision intelligence across domains. 

4. Discussion and Conclusion 

The present qualitative synthesis sought to integrate methodological and conceptual 

advances in surrogate-assisted global optimization (SAGO) across two decades of engineering 

research, focusing on how surrogate frameworks, optimization strategies, and robustness 

mechanisms have evolved in the context of expensive simulation-based design. The findings 

derived from the thematic analysis of 20 peer-reviewed articles reveal three overarching 

trends: first, the steady transformation of surrogate modeling frameworks from deterministic 

approximators to probabilistic and hybrid learning architectures; second, the increasing 

sophistication of global optimization mechanisms centered on adaptive trust regions and 

Bayesian reasoning; and third, the growing concern with model robustness, generalization 

under distribution shift, and integration into large-scale simulation workflows. Together, 

these themes confirm that SAGO is maturing from a computational workaround for costly 

simulations into a unified paradigm for data-driven engineering optimization, characterized 

by uncertainty-awareness, scalability, and cross-disciplinary adaptability (Forrester & Keane, 

2009; Jin, 2011). 

The evolution of surrogate modeling frameworks observed in this study underscores a 

major epistemological shift in how engineers conceptualize approximation and prediction. 

The results reveal that early surrogate models—polynomial response surfaces and radial basis 

functions—served primarily as low-cost interpolators, effective in simple convex design 

spaces but insufficient for nonlinear, high-dimensional domains (Sacks et al., 1989; Regis & 

Shoemaker, 2007). The synthesis shows that Kriging and Gaussian Process Regression (GPR) 

transformed surrogate modeling by introducing probabilistic learning, thus enabling the 

quantification of predictive uncertainty and guiding exploration–exploitation trade-offs 

(Forrester et al., 2008; Santner et al., 2003). This transition from deterministic to probabilistic 

modeling aligns with broader trends in engineering computation, where uncertainty 

quantification and Bayesian inference increasingly define best practices (Frazier, 2018; 

Shahriari et al., 2016). Studies in the review repeatedly emphasized that this capability allowed 

surrogate models to act not only as computational approximations but also as information-

theoretic agents capable of autonomously suggesting new evaluation points based on 

confidence intervals. More recent works incorporating ensemble surrogates, co-Kriging, and 

hybrid neural architectures demonstrate an emerging convergence between physics-based 

modeling and machine learning (Zhao & Xue, 2019; Karniadakis et al., 2021). The present 

synthesis found strong support for the notion that deep surrogates such as Physics-Informed 

Neural Networks (PINNs) and graph-based models extend surrogate modeling to nonlinear, 

high-dimensional, and multi-physics domains by embedding governing equations into 

network architectures (Raissi et al., 2019). This hybridization enhances interpretability and 
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extrapolative performance, addressing one of the most persistent criticisms of purely data-

driven models. Thus, consistent with the theoretical trajectory identified by Jin (2011) and 

Forrester and Keane (2009), surrogate-assisted optimization has evolved from local curve-

fitting into a probabilistic, adaptive, and physically grounded modeling discipline. 

In the second major theme, the review demonstrates that global optimization strategies 

have co-evolved with surrogate model complexity, reflecting an ongoing tension between local 

accuracy and global efficiency. The results show that early surrogate-assisted optimization 

methods largely relied on trust-region frameworks, which constrain the optimization search 

to regions of known surrogate accuracy, expanding or shrinking dynamically based on model 

fidelity and improvement ratio (Conn et al., 2000). This approach ensures stability and 

guaranteed convergence, an important feature in engineering contexts where small model 

errors can produce catastrophic design outcomes. However, trust-region frameworks are 

inherently local and can become inefficient in highly multimodal landscapes. The emergence 

of Bayesian optimization (BO) represents a major advancement, providing a mathematically 

principled mechanism for global exploration through acquisition functions such as Expected 

Improvement (EI), Probability of Improvement (PI), and Upper Confidence Bound (UCB) (Jones 

et al., 1998; Mockus, 2012). The synthesis highlights that combining trust-region principles 

with Bayesian reasoning—such as through local Bayesian optimization or uncertainty-based 

trust adjustment—has yielded hybrid algorithms that maintain local precision while 

accelerating global convergence (Eriksson et al., 2019; Lam et al., 2015). These hybrid schemes 

are particularly effective for high-dimensional or multi-objective problems where design 

spaces exhibit numerous local minima. Consistent with Ginsbourger et al. (2010) and Knowles 

(2006), the reviewed studies also confirm that multi-objective surrogate optimization and 

batch acquisition strategies have enabled parallel, high-throughput search while maintaining 

convergence guarantees. The theoretical insight derived here is that modern surrogate-

assisted optimization methods no longer separate exploration and exploitation heuristically; 

instead, they merge them into statistically unified acquisition functions that leverage model 

uncertainty as an optimization driver. This confirms the shift toward an information-theoretic 

view of optimization, where the goal is not only to find an optimum but also to minimize 

epistemic uncertainty about the design space. 

The third main finding concerns the increasing attention to robustness, generalization, and 

integration of surrogate-assisted optimization within real-world engineering workflows. The 

results reveal that surrogate models, once treated as static approximations, are now evolving 

toward adaptive and transferable systems capable of learning from dynamic data 

environments. In the reviewed literature, uncertainty quantification (UQ) and distributionally 

robust optimization (DRO) have emerged as key mechanisms to address the unreliability of 

surrogates under nonstationary input distributions or sparse data conditions (Sankararaman 

& Mahadevan, 2013; Frazier, 2018). Recent studies have shown that decomposition of 

uncertainty into aleatoric and epistemic components improves interpretability and guides 
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risk-aware decision-making (Wang et al., 2022). Furthermore, the rise of transfer learning and 

multi-fidelity modeling—where surrogates trained on coarse data or related tasks are adapted 

for new domains—suggests a growing movement toward continuous or lifelong optimization 

(Perdikaris & Karniadakis, 2016; Perdikaris et al., 2017). These approaches not only reduce 

computational cost but also enhance model resilience against data scarcity and changing 

operating conditions. The review also found growing empirical support for the integration of 

surrogate-assisted methods within digital twin systems and simulation-based engineering 

design (SBED) frameworks (Willcox & Megretski, 2019). By embedding surrogates within digital 

twins, engineers can perform real-time prediction, sensitivity analysis, and optimization, 

transforming static design models into adaptive cyber-physical systems. Consistent with 

Surjanovic and Bingham (2013), the increasing use of standardized benchmarks and 

reproducibility protocols has also strengthened methodological transparency, addressing 

long-standing concerns about replicability in surrogate modeling research. 

Taken together, these findings indicate that the SAGO field is undergoing a profound 

transformation: from heuristic, task-specific optimization toward systematic, scalable, and 

uncertainty-aware intelligence for engineering design. The integration of machine learning 

with physics-based modeling has blurred traditional boundaries between simulation and data 

analytics, ushering in an era of hybrid surrogate systems that learn, adapt, and generalize 

across domains. This is in agreement with the position advanced by Karniadakis et al. (2021), 

who describe the emergence of “physics-informed machine learning” as the next step in 

computational engineering. The thematic analysis suggests that the future of SAGO lies in 

convergence—of surrogate modeling, Bayesian inference, reinforcement learning, and high-

performance computing (HPC)—into holistic frameworks capable of orchestrating design 

exploration autonomously. In this respect, the role of SAGO extends beyond optimization into 

the broader context of intelligent decision support, where models not only predict outcomes 

but dynamically inform design, control, and planning decisions under uncertainty. 

The review also reveals several explanatory linkages between the themes identified here 

and prior empirical findings. For instance, the increasing reliance on probabilistic surrogates 

confirms earlier theoretical predictions that Gaussian Process-based models would become 

dominant due to their ability to quantify uncertainty and guide sampling (Santner et al., 2003; 

Shahriari et al., 2016). Similarly, the growing use of multi-fidelity methods corroborates 

Kennedy and O’Hagan’s (2000) foundational claim that hierarchical information fusion 

improves efficiency without sacrificing predictive accuracy. Moreover, the move toward 

hybrid and ensemble models supports findings by Zhao and Xue (2019), who demonstrated 

that combining diverse surrogate structures enhances robustness in multi-objective design 

spaces. These alignments strengthen the interpretive validity of the current synthesis, 

confirming that recent innovations—particularly deep surrogates and Bayesian frameworks—

are not isolated trends but part of a long-term trajectory toward adaptive, learning-based 

optimization in engineering sciences. 
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Despite these achievements, the review also highlights several theoretical and practical 

limitations inherent in current SAGO research. One major limitation lies in the scalability of 

probabilistic surrogates: Gaussian Process models, though powerful, struggle with cubic 

computational complexity as the number of design samples grows (Frazier, 2018). While 

sparse GPs and deep kernel learning approaches offer partial solutions, they often trade off 

interpretability for speed. Similarly, deep surrogates like PINNs and neural Kriging variants 

demand large, high-quality datasets, which are rarely available in expensive simulation 

contexts. The analysis also indicates that benchmarking practices remain fragmented, with 

many studies employing proprietary datasets or inconsistent performance metrics, making it 

difficult to establish universal baselines (Surjanovic & Bingham, 2013). Furthermore, although 

multi-fidelity and transfer-learning techniques have improved adaptability, their integration 

into industrial workflows remains limited by software interoperability and the need for expert 

calibration. Another limitation involves the interpretability–accuracy trade-off in hybrid 

surrogates: while deep neural surrogates achieve superior predictive accuracy, they often 

obscure physical meaning, potentially eroding engineer trust in critical applications such as 

aerospace design or safety validation (Raissi et al., 2019). Lastly, most existing frameworks 

still assume smooth and differentiable objective functions, whereas real-world engineering 

systems may involve discontinuities, stochastic behavior, or discrete variables that challenge 

surrogate smoothness assumptions. 

Given these challenges, future research on surrogate-assisted global optimization should 

pursue several complementary directions. First, there is a clear need for scalable probabilistic 

frameworks that retain the interpretability of classical Kriging while achieving linear or 

sublinear training complexity. Advances in sparse Gaussian Processes, kernel interpolation, 

and operator learning may help realize this goal (Wang et al., 2022). Second, researchers 

should focus on developing adaptive and online surrogates capable of incremental learning 

from streaming data, enabling continual refinement without retraining from scratch. This 

would facilitate integration into digital twin architectures and real-time optimization loops 

(Willcox & Megretski, 2019). Third, future studies should expand benchmark repositories, 

adopting open-access standardized datasets and reproducibility protocols to enable 

consistent comparison of algorithms across domains (Surjanovic & Bingham, 2013). Fourth, 

integrating reinforcement learning and AutoML for surrogate hyperparameter tuning could 

further automate model selection, bridging the gap between human expertise and algorithmic 

adaptability (Feurer & Hutter, 2019). Finally, researchers should explore uncertainty-aware 

optimization under nonstationarity, combining Bayesian inference with adversarial and 

distributionally robust learning to ensure reliability in changing environments. These avenues 

would collectively advance the theoretical depth and practical reach of surrogate-based 

optimization. 

From a practical perspective, the findings of this review carry important implications for 

engineers, designers, and organizations adopting SAGO frameworks. Practitioners should 
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recognize that surrogate-assisted optimization is not merely a computational convenience 

but a strategic methodology for intelligent design exploration. Effective implementation 

requires a rigorous workflow: defining appropriate design-of-experiments (DoE) strategies, 

selecting surrogates aligned with system physics, and validating predictive performance with 

uncertainty estimates. For industrial applications, integrating SAGO into model-based 

systems engineering (MBSE) pipelines can significantly reduce design-cycle times while 

improving decision confidence (Goh et al., 2013). Organizations should also invest in building 

cross-functional expertise that combines computational modeling, statistics, and machine 

learning, ensuring that surrogate models are developed, validated, and deployed responsibly. 

Moreover, the move toward digital twins and adaptive control highlights the need for 

continuous data feedback and online surrogate updates to maintain model accuracy 

throughout a product’s lifecycle (Willcox & Megretski, 2019). Finally, practitioners should 

prioritize transparent documentation, reproducibility, and open-source tools like OpenMDAO, 

PyKriging, or BoTorch (Botorch Developers, 2020) to facilitate collaborative research and 

accelerate innovation. By embracing these practices, the engineering community can leverage 

surrogate-assisted global optimization not only as a research methodology but as a practical 

engine of innovation, efficiency, and reliability in the era of data-driven design. 
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