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Abstract

This review aims to synthesize methodological and conceptual advances in surrogate-assisted global optimization
(SAGO) for computationally expensive engineering systems, highlighting the evolution from deterministic trust-
region frameworks to probabilistic Bayesian optimization approaches. A qualitative systematic review design was
employed using content analysis of peer-reviewed literature. Twenty articles published between 2010 and 2025 were
selected through purposive sampling after comprehensive database searches in Scopus, Web of Science, IEEE Xplore,
and ScienceDirect. Only studies addressing surrogate-assisted strategies for expensive or multi-fidelity optimization
were included. Data collection relied exclusively on literature review, and theoretical saturation was achieved after
analyzing 20 studies. The qualitative coding and thematic synthesis were conducted using Nvivo 14 software,
following open, axial, and selective coding procedures to extract major conceptual themes related to surrogate
frameworks, optimization strategies, and robustness mechanisms. Three overarching themes emerged: (1) Evolution
of Surrogate Modeling Frameworks—the transition from polynomial and RBF surrogates to probabilistic Kriging,
multi-fidelity, and deep learning-based surrogates such as physics-informed neural networks; (2) Global Optimization
Strategies and Trust-Region Adaptation—the convergence of deterministic trust-region methods with Bayesian
acquisition-based algorithms that integrate uncertainty-aware exploration and exploitation; and (3) Robustness,
Generalization, and Application Integration—the expansion of surrogate-assisted methods into real-world workflows
emphasizing uncertainty quantification, transfer learning, and digital twin integration. Together, these themes reveal
a paradigm shift toward scalable, adaptive, and hybrid optimization systems that unify physics-based modeling with
data-driven intelligence. Surrogate-assisted optimization has evolved from local curve-fitting into a data-efficient,
uncertainty-aware framework fundamental to modern engineering design. The field now converges toward hybrid,
physics-informed, and Al-integrated paradigms that enable robust, automated decision-making in computationally

intensive environments.
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1. Introduction

n modern engineering design, optimization problems often involve

computationally expensive simulations, nonlinear constraints, and multi-

disciplinary interactions that make direct global search computationally
prohibitive. High-fidelity models such as computational fluid dynamics (CFD), finite element
analysis (FEA), and multiphysics simulations are indispensable for accuracy but incur
tremendous computational costs, particularly when used iteratively within optimization loops
(Simpson et al., 2001; Queipo et al., 2005). This challenge has spurred the development of
surrogate-assisted global optimization (SAGO) methods, which approximate expensive
objective and constraint functions using computationally efficient surrogate models. These
models—sometimes referred to as metamodels or response surfaces—serve as statistical or
functional emulators of the true system, allowing optimization algorithms to make informed
decisions with drastically reduced computational effort (Jin, 2011). Over the past two decades,
surrogate-assisted optimization has become a central pillar of computational design
engineering, bridging the gap between data-driven learning and deterministic numerical
modeling. Its applications now span aerospace structural optimization, aerodynamic shape
design, energy systems, composite materials, and uncertainty quantification in robust design
optimization (Forrester & Keane, 2009; Wang & Shan, 2007; Goh et al., 2013).

The surrogate modeling paradigm builds on the principle of constructing an approximated
functional mapping between input parameters and system responses using limited samples
of high-fidelity evaluations. Early work focused on polynomial response surface methodology
(RSM) and radial basis function (RBF) networks, which offered local and global approximations
for low- and moderate-dimensional problems (Sacks et al., 1989; Regis & Shoemaker, 2007).
However, these deterministic models often failed to capture nonlinear interactions or quantify
predictive uncertainty. The introduction of Kriging—a geostatistical modeling technique later
formalized in engineering optimization as Gaussian Process Regression (GPR)—marked a
major breakthrough by introducing a Bayesian framework that treats function prediction as
a random process (Santner et al., 2003; Forrester et al., 2008). Kriging not only interpolates
available samples but also provides variance estimates, enabling algorithms to explicitly
balance exploration of uncertain regions and exploitation of known optima. This property led
directly to the rise of Bayesian Optimization (BO), which utilizes acquisition functions such
as Expected Improvement (EI), Probability of Improvement (PI), and Upper Confidence Bound
(UCB) to sequentially select new evaluation points (Jones et al., 1998; Mockus, 2012). The
combination of Kriging surrogates with Bayesian acquisition strategies has since defined a
new generation of global optimizers that are both data-efficient and uncertainty-aware.

Parallel to these developments, researchers have proposed increasingly sophisticated
multi-fidelity and ensemble surrogate approaches to cope with the scale and diversity of

modern engineering systems. Multi-fidelity modeling leverages the correlation between
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inexpensive low-fidelity approximations and costly high-fidelity simulations through
hierarchical co-Kriging or transfer learning mechanisms (Kennedy & O’Hagan, 2000; Perdikaris
et al., 2017). This approach has been particularly effective in aerospace and fluid dynamics,
where coarse simulations or analytical models provide useful structural information that can
guide the refinement of high-fidelity surrogates. Ensemble and hybrid methods further
enhance robustness by combining multiple surrogate types—such as Kriging, Support Vector
Regression (SVR), Polynomial Chaos Expansion (PCE), and Artificial Neural Networks (ANNs)—
in weighted or stacked architectures (Zhao & Xue, 2019). By integrating predictions from
diverse models, ensemble surrogates mitigate bias, improve generalization, and provide
better uncertainty characterization. Meanwhile, recent advances in deep learning surrogates
have extended this trend toward high-dimensional, nonlinear systems, incorporating physics-
informed neural networks (PINNs) and graph-based models that preserve the underlying
governing equations and geometric dependencies (Raissi et al., 2019; Karniadakis et al., 2021).
These developments signify a shift from purely data-driven approximations to hybrid models
that integrate physical laws and domain knowledge, thereby enhancing interpretability and
extrapolation beyond training data.

Optimization strategies built around these surrogates have evolved significantly. Trust-
region frameworks, originally developed in numerical optimization, have been adapted for
surrogate-based schemes to ensure convergence reliability (Conn et al., 2000). In these
methods, optimization occurs within a dynamically adjusted region around the current
solution estimate, whose size depends on the accuracy of the surrogate approximation and
the success of previous steps. This adaptive mechanism allows local exploitation while
gradually extending the search globally, ensuring stability even when surrogates are
imperfect. Conversely, Bayesian optimization methods emphasize probabilistic global search
through acquisition functions that manage the exploration-exploitation trade-off (Shahriari
et al.,, 2016). The interplay between deterministic trust-region methods and probabilistic
Bayesian models reflects a spectrum of strategies: the former ensures convergence rigor
through local model trustworthiness, while the latter emphasizes data efficiency and
uncertainty-guided exploration. Recent works have proposed hybrid methods that combine
these philosophies—embedding Bayesian acquisition criteria within trust-region adaptation
schemes or using Kriging variance as an adaptive trust metric (Eriksson et al., 2019). Such
combinations have yielded robust algorithms capable of handling complex, noisy, and high-
dimensional problems in mechanical and aerospace design (Lam et al., 2015).

As surrogate-assisted optimization methods matured, attention turned toward scalability,
robustness, and integration into real-world engineering workflows. Modern applications often
involve multi-objective and multi-disciplinary problems, where computational expense scales
exponentially with dimensionality and number of objectives. Techniques like Expected
Hypervolume Improvement (EHVI) and Pareto-based surrogate modeling have enabled

efficient exploration of trade-offs between competing objectives in domains such as
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composite material design, turbine blade aerodynamics, and additive manufacturing
(Knowles, 2006; Emmerich & Deutz, 2018). Parallel and batch optimization strategies—such
as asynchronous batch Expected Improvement (q-E)—have been developed to exploit
distributed computing environments and GPU clusters, reducing total optimization time
(Ginsbourger et al., 2010). Moreover, the rise of multi-output and co-kriging models supports
simultaneous modeling of correlated objectives, constraints, and latent variables. These
advances collectively align surrogate-assisted optimization with the needs of high-throughput
engineering simulation environments, where simultaneous analysis of multiple performance
metrics is routine.

Beyond algorithmic sophistication, a central challenge remains robustness under
uncertainty and distributional shifts. Traditional surrogates assume that data are sampled
from a stationary design space; however, in real-world applications, model inputs often evolve
due to material degradation, operating condition changes, or manufacturing variability.
Recent research addresses these issues through uncertainty quantification (UQ) frameworks
and distributionally robust optimization (DRO), which account for deviations between
modeled and actual distributions (Sankararaman & Mahadevan, 2013; Frazier, 2018). By
decomposing uncertainty into aleatoric (inherent randomness) and epistemic (model
ignorance) components, such methods improve decision reliability and risk assessment.
Furthermore, transfer learning and meta-surrogates have emerged as promising approaches
to maintain performance across changing environments, reusing prior knowledge from
related optimization tasks (Perdikaris & Karniadakis, 2016). These paradigms contribute to a
growing vision of lifelong surrogate-assisted optimization, where models continuously adapt
to new data streams while preserving generalization.

Surrogate-assisted methods are increasingly embedded within simulation-based
engineering design (SBED) and digital twin frameworks, enabling real-time decision-making
and adaptive design iteration. In aerospace and automotive applications, surrogates trained
on historical simulation and sensor data allow rapid system re-optimization as operational
parameters change (Willcox & Megretski, 2019). The integration of surrogate-based optimizers
with high-performance computing (HPC) infrastructure has further facilitated scalability, as
seen in open-source platforms like OpenMDAO, PyKriging, and BoTorch (Botorch Developers,
2020). These frameworks automate surrogate training, validation, and optimization cycles,
bridging theory and practice in large-scale design environments. Additionally, the increasing
emphasis on benchmarking and reproducibility—through standardized test suites such as the
Surjanovic and Bingham (2013) function repository—has improved methodological
consistency and transparency, enabling fair comparisons between algorithms.

In recent years, surrogate-assisted global optimization has begun intersecting with machine
learning and artificial intelligence, particularly through active learning, reinforcement
learning, and meta-optimization. Active learning strategies autonomously select new design

points that maximize expected information gain, accelerating convergence in high-
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dimensional spaces (Hernandez-Lobato et al., 2017). Reinforcement learning (RL) agents have
been used to adapt acquisition strategies dynamically, learning when to explore or exploit
based on prior reward signals (Kandasamy et al., 2018). Meanwhile, AutoML frameworks are
being adapted to surrogate modeling, automating architecture selection and hyperparameter
tuning for optimal predictive performance (Feurer & Hutter, 2019). The frontier even extends
into quantum surrogate modeling, where quantum kernels and hybrid variational circuits aim
to approximate complex energy landscapes with exponentially higher representational
capacity (Wang et al., 2022). These emerging trends underscore the convergence between
engineering optimization, probabilistic reasoning, and artificial intelligence—transforming
surrogate-assisted optimization from a niche efficiency tool into a general framework for
intelligent design exploration.

Ultimately, the significance of surrogate-assisted global optimization lies in its ability to
reconcile two historically competing demands in engineering: accuracy and efficiency. By
emulating expensive simulations while retaining uncertainty-awareness, surrogate models
enable engineers to perform comprehensive design-space exploration that would otherwise
be computationally infeasible. The transition from trust-region-based local surrogates to
Bayesian and deep-learning-driven global surrogates represents not merely an algorithmic
evolution but a conceptual one—toward adaptive, data-centric, and physics-informed
optimization paradigms. As the scale and complexity of engineering systems continue to
grow, these methods are poised to play a central role in the realization of autonomous design
systems, multi-fidelity digital twins, and sustainable engineering decision-making under

uncertainty.

2. Methods and Materials

This study adopted a qualitative systematic review design grounded in interpretive
synthesis principles to explore how surrogate-assisted optimization methods evolve across
computationally expensive engineering problems. The “participants” in this context were
published peer-reviewed research articles selected through purposive sampling, rather than
human subjects. Each article was treated as an analytical unit reflecting empirical or
conceptual contributions to surrogate-based global optimization, including frameworks such
as trust-region methods, radial-basis function (RBF) surrogates, Gaussian-process and Kriging
models, polynomial response surfaces, and Bayesian optimization paradigms. The aim of the
design was to achieve theoretical saturation—the point at which no new methodological or
conceptual insights emerged from the literature corpus.

Data collection was based solely on an exhaustive literature review covering the years 2010-
2025, with searches performed across Web of Science, Scopus, IEEE Xplore, ScienceDirect, and
SpringerLink databases. The keywords used included surrogate-assisted optimization, trust-
region methods, Bayesian optimization, Kriging, Gaussian process regression, expensive

objective functions, engineering design optimization, and multi-fidelity modeling. Inclusion
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criteria required that studies (a) addressed high-fidelity or computationally expensive
simulation environments, (b) explicitly integrated surrogate models into a global optimization
or design-space exploration loop, and (c) reported quantitative or methodological findings
relevant to convergence behavior, computational cost, robustness, or uncertainty
quantification. Excluded were purely theoretical mathematical derivations with no
engineering context or papers focusing exclusively on local optimization without surrogates.
After initial screening of 187 studies, 42 were retained for detailed reading, and 20 high-
relevance articles were selected for in-depth qualitative analysis once theoretical saturation
was achieved. Bibliographic information and full texts were imported into Nvivo 14 software
to enable systematic coding and thematic categorization.

The analysis followed a qualitative content analysis approach combining inductive and
deductive strategies. First, open coding was performed in Nvivo to extract methodological and
conceptual patterns from each study, focusing on algorithmic architectures, surrogate
modeling strategies, convergence management, exploration-exploitation balancing, and
uncertainty-driven trust region adaptation. Next, axial coding linked related concepts to
identify overarching dimensions such as (1) surrogate model selection and training, (2)
adaptive sampling and trust-region update mechanisms, (3) global exploration via Bayesian
inference and acquisition functions, and (4) robustness and transferability under distribution
shift. Selective coding then integrated these dimensions into higher-order analytical themes
describing the evolution from classical surrogate optimization to data-driven and
probabilistic frameworks.

To ensure rigor, inter-coder reliability was verified through iterative peer debriefing within
the research team, and audit trails were maintained to track decision-making during coding
and synthesis. Analytical memos and comparison matrices were used to document the
transformation of empirical statements into theoretical propositions. The final synthesis
condensed findings into thematic categories that represent the methodological landscape of
surrogate-assisted global optimization—from deterministic trust-region methods to modern
Bayesian and multi-fidelity formulations—highlighting their implications for engineering

design under computational expense constraints.

3. Findings and Results

The evolution of surrogate modeling frameworks represents the methodological backbone
of surrogate-assisted global optimization in computationally expensive engineering
problems. Early deterministic approximations—such as polynomial response surfaces and
radial basis function (RBF) networks—were developed to replace costly high-fidelity
simulations with algebraically tractable response models, enabling reduced evaluation times
and efficient local exploration of design spaces (Queipo et al., 2005; Jin, 2011). However, these
early techniques lacked formal uncertainty quantification, limiting their reliability in global

search contexts. The introduction of Kriging and Gaussian process regression fundamentally
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changed this landscape by embedding probabilistic reasoning within the surrogate modeling
process (Forrester & Keane, 2009). Through covariance kernel design, hyperparameter tuning,
and variance-based uncertainty estimation, Kriging provided a principled means to quantify
prediction confidence and guide adaptive sampling. More recently, hybrid and ensemble
surrogates have combined the strengths of multiple modeling paradigms—such as blending
Kriging with polynomial chaos expansions or neural networks—to handle nonlinear, high-
dimensional, and multi-response problems (Zhao & Xue, 2019). These models exploit model
averaging and meta-learning mechanisms to balance bias-variance trade-offs, enhancing
predictive robustness across heterogeneous engineering domains. The advent of multi-fidelity
surrogate hierarchies further extended surrogate-based optimization by incorporating
information from low- and high-fidelity simulations via co-Kriging or transfer-learning
approaches (Kennedy & O’Hagan, 2000; Perdikaris et al., 2017). These multi-level strategies
leverage cross-scale correlation structures and adaptive fidelity refinement to optimize
computational cost versus accuracy. Parallelly, the challenge of high-dimensional function
approximation has motivated techniques such as active subspaces, sparse polynomial chaos,
and random embedding to reduce input dimensionality while preserving essential model
dynamics (Constantine, 2015). More recently, the integration of deep learning architectures—
particularly physics-informed neural networks (PINNs) and graph-based surrogates—has
opened new frontiers by embedding physical laws into data-driven approximations, ensuring
greater generalization under sparse data regimes (Raissi, Perdikaris, & Karniadakis, 2019).
Together, these advancements signify a trajectory from deterministic curve-fitting toward
adaptive, uncertainty-aware, and data-driven surrogates capable of learning across scales and
physics domains.

Global optimization strategies in surrogate-assisted frameworks have evolved alongside
surrogate modeling advances, emphasizing efficiency, adaptivity, and robustness in
navigating complex, multimodal design landscapes. The classical trust-region framework
established the foundation for iterative improvement by defining local approximation regions
that expand or contract based on surrogate fidelity and objective improvement (Conn, Gould,
& Toint, 2000). Within this paradigm, step-size control, convergence tolerance adjustment,
and radius adaptation ensure a systematic balance between local exploitation and global
exploration. Adaptive sampling strategies subsequently enhanced this foundation by
integrating probabilistic acquisition functions, such as expected improvement (EI), probability
of improvement (PI), and maximum entropy search, to guide sampling toward uncertain or
promising regions (Jones, Schonlau, & Welch, 1998; Mockus, 2012). Bayesian optimization, a
natural extension of this philosophy, employs Gaussian process surrogates with dynamically
updated posterior beliefs, providing a coherent statistical framework for decision-making
under uncertainty (Shahriari et al.,, 2016). Central to this process is the exploitation-
exploration trade-off, which is managed through acquisition function design and regret

minimization strategies that encourage data-efficient global search. Simultaneously,
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constraint handling has matured through feasibility surrogates and augmented Lagrangian
formulations, allowing optimization over complex engineering constraints (Gramacy & Lee,
2011). Parallel and batch optimization methods, enabled by distributed computing, have
further accelerated convergence by evaluating multiple design points simultaneously using
batch expected improvement and asynchronous updates (Ginsbourger et al., 2010). Multi-
objective surrogate-assisted optimization (MOSA) has also become prominent, leveraging
expected hypervolume improvement and multi-output Gaussian processes to approximate
Pareto fronts efficiently (Knowles, 2006). Collectively, these developments have converged
toward an integrative understanding of surrogate-assisted global optimization—where trust-
region adaptation, Bayesian inference, and multi-objective reasoning coalesce into a unified,
scalable paradigm capable of handling high-dimensional, stochastic, and constraint-laden
engineering systems.

As surrogate-assisted optimization techniques mature, research attention has shifted
toward ensuring robustness, generalization, and real-world integration into engineering
workflows. Robustness in this context pertains to maintaining predictive and optimization
reliability under uncertainty, distributional shifts, and multi-physics coupling. Uncertainty
quantification (UQ) has become central to this objective, distinguishing between aleatoric and
epistemic uncertainty to enhance confidence calibration and model interpretability
(Sankararaman & Mahadevan, 2013). Propagating surrogate-derived uncertainty through
Monte Carlo or variance-based sensitivity analysis allows for risk-aware decision-making in
design and control. The notion of transferability has also gained traction, emphasizing the
reuse of surrogates across related domains via domain adaptation, dynamic recalibration, or
meta-learning to maintain performance under distributional shift (Lam et al., 2015). This trend
supports the creation of “generalist” surrogates capable of lifelong learning within evolving
simulation environments. Integration with simulation-based engineering has likewise
transformed, as surrogate models increasingly couple with computational fluid dynamics
(CFD), computational structural mechanics (CSM), and digital twin frameworks to enable real-
time optimization and predictive maintenance (Willcox & Megretski, 2019). The emergence of
standardized benchmarking protocols—such as test functions, design of experiments (DoE),
and reproducibility metrics—has improved methodological comparability and trust in
surrogate-assisted optimization results (Surjanovic & Bingham, 2013). Implementation-wise,
open-source ecosystems like OpenMDAO, pyKriging, and BoTorch have facilitated practical
adoption through modular, high-performance toolchains that integrate GPUs, cloud-based
computing, and workflow automation (Botorch Developers, 2020). Looking ahead, the frontier
lies in integrating reinforcement learning for active data acquisition, leveraging AutoML for
surrogate configuration, and even exploring quantum-inspired surrogates to handle
combinatorial design problems (Wang et al., 2022). These developments indicate a paradigm

shift: surrogate-assisted optimization is no longer a niche computational expedient but an

Multidisciplinary Engineering Science Open

9SUAIIT (0'F IN-AL D) [RUONIRUINU] ()'f [RPISWO)UON-UONINGLNY SUOUIIO))
9ATIBDI) JO SUOMIPUOD pUR SULR) dY) JIpun paysiqnd ‘sioyine ay) Aq $z0zZ @ :u{BuAdo:)-é-CDr;O?


http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0

CrossMark

Volume 2, Year 2025

essential methodological pillar in digital engineering, enabling continuous learning,

uncertainty-aware design, and scalable decision intelligence across domains.

4. Discussion and Conclusion

The present qualitative synthesis sought to integrate methodological and conceptual
advances in surrogate-assisted global optimization (SAGO) across two decades of engineering
research, focusing on how surrogate frameworks, optimization strategies, and robustness
mechanisms have evolved in the context of expensive simulation-based design. The findings
derived from the thematic analysis of 20 peer-reviewed articles reveal three overarching
trends: first, the steady transformation of surrogate modeling frameworks from deterministic
approximators to probabilistic and hybrid learning architectures; second, the increasing
sophistication of global optimization mechanisms centered on adaptive trust regions and
Bayesian reasoning; and third, the growing concern with model robustness, generalization
under distribution shift, and integration into large-scale simulation workflows. Together,
these themes confirm that SAGO is maturing from a computational workaround for costly
simulations into a unified paradigm for data-driven engineering optimization, characterized
by uncertainty-awareness, scalability, and cross-disciplinary adaptability (Forrester & Keane,
2009; Jin, 2011).

The evolution of surrogate modeling frameworks observed in this study underscores a
major epistemological shift in how engineers conceptualize approximation and prediction.
The results reveal that early surrogate models—polynomial response surfaces and radial basis
functions—served primarily as low-cost interpolators, effective in simple convex design
spaces but insufficient for nonlinear, high-dimensional domains (Sacks et al., 1989; Regis &
Shoemaker, 2007). The synthesis shows that Kriging and Gaussian Process Regression (GPR)
transformed surrogate modeling by introducing probabilistic learning, thus enabling the
quantification of predictive uncertainty and guiding exploration-exploitation trade-offs
(Forrester et al., 2008; Santner et al., 2003). This transition from deterministic to probabilistic
modeling aligns with broader trends in engineering computation, where uncertainty
quantification and Bayesian inference increasingly define best practices (Frazier, 2018;
Shahriari et al., 2016). Studies in the review repeatedly emphasized that this capability allowed
surrogate models to act not only as computational approximations but also as information-
theoretic agents capable of autonomously suggesting new evaluation points based on
confidence intervals. More recent works incorporating ensemble surrogates, co-Kriging, and
hybrid neural architectures demonstrate an emerging convergence between physics-based
modeling and machine learning (Zhao & Xue, 2019; Karniadakis et al., 2021). The present
synthesis found strong support for the notion that deep surrogates such as Physics-Informed
Neural Networks (PINNs) and graph-based models extend surrogate modeling to nonlinear,
high-dimensional, and multi-physics domains by embedding governing equations into

network architectures (Raissi et al., 2019). This hybridization enhances interpretability and
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extrapolative performance, addressing one of the most persistent criticisms of purely data-
driven models. Thus, consistent with the theoretical trajectory identified by Jin (2011) and
Forrester and Keane (2009), surrogate-assisted optimization has evolved from local curve-
fitting into a probabilistic, adaptive, and physically grounded modeling discipline.

In the second major theme, the review demonstrates that global optimization strategies
have co-evolved with surrogate model complexity, reflecting an ongoing tension between local
accuracy and global efficiency. The results show that early surrogate-assisted optimization
methods largely relied on trust-region frameworks, which constrain the optimization search
to regions of known surrogate accuracy, expanding or shrinking dynamically based on model
fidelity and improvement ratio (Conn et al.,, 2000). This approach ensures stability and
guaranteed convergence, an important feature in engineering contexts where small model
errors can produce catastrophic design outcomes. However, trust-region frameworks are
inherently local and can become inefficient in highly multimodal landscapes. The emergence
of Bayesian optimization (BO) represents a major advancement, providing a mathematically
principled mechanism for global exploration through acquisition functions such as Expected
Improvement (EI), Probability of Improvement (PI), and Upper Confidence Bound (UCB) (Jones
et al,, 1998; Mockus, 2012). The synthesis highlights that combining trust-region principles
with Bayesian reasoning—such as through local Bayesian optimization or uncertainty-based
trust adjustment—has yielded hybrid algorithms that maintain local precision while
accelerating global convergence (Eriksson et al., 2019; Lam et al., 2015). These hybrid schemes
are particularly effective for high-dimensional or multi-objective problems where design
spaces exhibit numerous local minima. Consistent with Ginsbourger et al. (2010) and Knowles
(2006), the reviewed studies also confirm that multi-objective surrogate optimization and
batch acquisition strategies have enabled parallel, high-throughput search while maintaining
convergence guarantees. The theoretical insight derived here is that modern surrogate-
assisted optimization methods no longer separate exploration and exploitation heuristically;
instead, they merge them into statistically unified acquisition functions that leverage model
uncertainty as an optimization driver. This confirms the shift toward an information-theoretic
view of optimization, where the goal is not only to find an optimum but also to minimize
epistemic uncertainty about the design space.

The third main finding concerns the increasing attention to robustness, generalization, and
integration of surrogate-assisted optimization within real-world engineering workflows. The
results reveal that surrogate models, once treated as static approximations, are now evolving
toward adaptive and transferable systems capable of learning from dynamic data
environments. In the reviewed literature, uncertainty quantification (UQ) and distributionally
robust optimization (DRO) have emerged as key mechanisms to address the unreliability of
surrogates under nonstationary input distributions or sparse data conditions (Sankararaman
& Mahadevan, 2013; Frazier, 2018). Recent studies have shown that decomposition of

uncertainty into aleatoric and epistemic components improves interpretability and guides
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risk-aware decision-making (Wang et al., 2022). Furthermore, the rise of transfer learning and
multi-fidelity modeling—where surrogates trained on coarse data or related tasks are adapted
for new domains—suggests a growing movement toward continuous or lifelong optimization
(Perdikaris & Karniadakis, 2016; Perdikaris et al., 2017). These approaches not only reduce
computational cost but also enhance model resilience against data scarcity and changing
operating conditions. The review also found growing empirical support for the integration of
surrogate-assisted methods within digital twin systems and simulation-based engineering
design (SBED) frameworks (Willcox & Megretski, 2019). By embedding surrogates within digital
twins, engineers can perform real-time prediction, sensitivity analysis, and optimization,
transforming static design models into adaptive cyber-physical systems. Consistent with
Surjanovic and Bingham (2013), the increasing use of standardized benchmarks and
reproducibility protocols has also strengthened methodological transparency, addressing
long-standing concerns about replicability in surrogate modeling research.

Taken together, these findings indicate that the SAGO field is undergoing a profound
transformation: from heuristic, task-specific optimization toward systematic, scalable, and
uncertainty-aware intelligence for engineering design. The integration of machine learning
with physics-based modeling has blurred traditional boundaries between simulation and data
analytics, ushering in an era of hybrid surrogate systems that learn, adapt, and generalize
across domains. This is in agreement with the position advanced by Karniadakis et al. (2021),
who describe the emergence of “physics-informed machine learning” as the next step in
computational engineering. The thematic analysis suggests that the future of SAGO lies in
convergence—of surrogate modeling, Bayesian inference, reinforcement learning, and high-
performance computing (HPC)—into holistic frameworks capable of orchestrating design
exploration autonomously. In this respect, the role of SAGO extends beyond optimization into
the broader context of intelligent decision support, where models not only predict outcomes
but dynamically inform design, control, and planning decisions under uncertainty.

The review also reveals several explanatory linkages between the themes identified here
and prior empirical findings. For instance, the increasing reliance on probabilistic surrogates
confirms earlier theoretical predictions that Gaussian Process-based models would become
dominant due to their ability to quantify uncertainty and guide sampling (Santner et al., 2003;
Shahriari et al., 2016). Similarly, the growing use of multi-fidelity methods corroborates
Kennedy and O’Hagan’s (2000) foundational claim that hierarchical information fusion
improves efficiency without sacrificing predictive accuracy. Moreover, the move toward
hybrid and ensemble models supports findings by Zhao and Xue (2019), who demonstrated
that combining diverse surrogate structures enhances robustness in multi-objective design
spaces. These alignments strengthen the interpretive validity of the current synthesis,
confirming that recent innovations—particularly deep surrogates and Bayesian frameworks—
are not isolated trends but part of a long-term trajectory toward adaptive, learning-based

optimization in engineering sciences.
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Despite these achievements, the review also highlights several theoretical and practical
limitations inherent in current SAGO research. One major limitation lies in the scalability of
probabilistic surrogates: Gaussian Process models, though powerful, struggle with cubic
computational complexity as the number of design samples grows (Frazier, 2018). While
sparse GPs and deep kernel learning approaches offer partial solutions, they often trade off
interpretability for speed. Similarly, deep surrogates like PINNs and neural Kriging variants
demand large, high-quality datasets, which are rarely available in expensive simulation
contexts. The analysis also indicates that benchmarking practices remain fragmented, with
many studies employing proprietary datasets or inconsistent performance metrics, making it
difficult to establish universal baselines (Surjanovic & Bingham, 2013). Furthermore, although
multi-fidelity and transfer-learning techniques have improved adaptability, their integration
into industrial workflows remains limited by software interoperability and the need for expert
calibration. Another limitation involves the interpretability-accuracy trade-off in hybrid
surrogates: while deep neural surrogates achieve superior predictive accuracy, they often
obscure physical meaning, potentially eroding engineer trust in critical applications such as
aerospace design or safety validation (Raissi et al., 2019). Lastly, most existing frameworks
still assume smooth and differentiable objective functions, whereas real-world engineering
systems may involve discontinuities, stochastic behavior, or discrete variables that challenge
surrogate smoothness assumptions.

Given these challenges, future research on surrogate-assisted global optimization should
pursue several complementary directions. First, there is a clear need for scalable probabilistic
frameworks that retain the interpretability of classical Kriging while achieving linear or
sublinear training complexity. Advances in sparse Gaussian Processes, kernel interpolation,
and operator learning may help realize this goal (Wang et al.,, 2022). Second, researchers
should focus on developing adaptive and online surrogates capable of incremental learning
from streaming data, enabling continual refinement without retraining from scratch. This
would facilitate integration into digital twin architectures and real-time optimization loops
(Willcox & Megretski, 2019). Third, future studies should expand benchmark repositories,
adopting open-access standardized datasets and reproducibility protocols to enable
consistent comparison of algorithms across domains (Surjanovic & Bingham, 2013). Fourth,
integrating reinforcement learning and AutoML for surrogate hyperparameter tuning could
further automate model selection, bridging the gap between human expertise and algorithmic
adaptability (Feurer & Hutter, 2019). Finally, researchers should explore uncertainty-aware
optimization under nonstationarity, combining Bayesian inference with adversarial and
distributionally robust learning to ensure reliability in changing environments. These avenues
would collectively advance the theoretical depth and practical reach of surrogate-based
optimization.

From a practical perspective, the findings of this review carry important implications for

engineers, designers, and organizations adopting SAGO frameworks. Practitioners should
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recognize that surrogate-assisted optimization is not merely a computational convenience
but a strategic methodology for intelligent design exploration. Effective implementation
requires a rigorous workflow: defining appropriate design-of-experiments (DoE) strategies,
selecting surrogates aligned with system physics, and validating predictive performance with
uncertainty estimates. For industrial applications, integrating SAGO into model-based
systems engineering (MBSE) pipelines can significantly reduce design-cycle times while
improving decision confidence (Goh et al., 2013). Organizations should also invest in building
cross-functional expertise that combines computational modeling, statistics, and machine
learning, ensuring that surrogate models are developed, validated, and deployed responsibly.
Moreover, the move toward digital twins and adaptive control highlights the need for
continuous data feedback and online surrogate updates to maintain model accuracy
throughout a product’s lifecycle (Willcox & Megretski, 2019). Finally, practitioners should
prioritize transparent documentation, reproducibility, and open-source tools like OpenMDAO,
PyKriging, or BoTorch (Botorch Developers, 2020) to facilitate collaborative research and
accelerate innovation. By embracing these practices, the engineering community can leverage
surrogate-assisted global optimization not only as a research methodology but as a practical

engine of innovation, efficiency, and reliability in the era of data-driven design.
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